

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

TESE DE DOUTORADO

“Context-Sensitive Analysis of x86 Obfuscated
Executables”

DAVIDSON RODRIGO BOCCARDO

Ilha Solteira – SP

outubro/2009

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

“Context-Sensitive Analysis of x86 Obfuscated
Executables”

DAVIDSON RODRIGO BOCCARDO

Orientador: Prof. Dr. Aleardo Manacero Júnior

Tese apresentada à Faculdade de

Engenharia - UNESP – Campus de Ilha

Solteira, para obtenção do título de

Doutor em Engenharia Elétrica.

Área de Conhecimento: Automação.

Ilha Solteira – SP

outubro/2009

FICHA CATALOGRÁFICA

 Elaborada pela Seção Técnica de Aquisição e Tratamento da Informação
 Serviço Técnico de Biblioteca e Documentação da UNESP - Ilha Solteira.

 Boccardo, Davidson Rodrigo.
B664c Context-sensitive analysis of x86 obfuscated executables / Davidson
 Rodrigo Boccardo. -- Ilha Solteira : [s.n.], 2009.
 104 f.

 Tese (doutorado) - Universidade Estadual Paulista. Faculdade de
 Engenharia de Ilha Solteira. Área de conhecimento: Automação, 2009

 Orientador: Aleardo Manacero Júnior
 Bibliografia: p. 99-104

 1. Análise estática. 2. Interpretação abstrata. 3. Ofuscação de código.

Dedication

I dedicate this work to my family.

Acknowledgements

I would like to thank everyone of the Sao Paulo State University, Department of

Computer Science and Statistics and Department of Electrical Engineering for teaching

quality, dedication and incentive in academics.

I would like to thank my advisors Aleardo Manacero Júnior and Arun Lakhotia for

their guidance and encouragement over these years. They have taught me how to achieve

my goals and how to develop my ideas. Sincere thanks to André Luiz Moura dos Santos,

Rodolfo Jardim de Azevedo, Sérgio Azevedo de Oliveira and Francisco Villarreal Alvarado

for being on my dissertation committee.

I also would like to thank the Brazilian Ministry of Education (CAPES) for the fi-

nancial support through of my doctorate.

A warm thanks for the colleagues from the Software Research Lab (SRL), especially

Michael Venable and Anshuman Singh for dedicating their time to cooperate with the im-

plementation and formal semantics while I was visiting the Center of Advanced Computer

Studies at Lafayette.

A special thanks to my parents and family who helped me out on my problems and

doubts in all these years. I would also like to thank the Biessenberger family for helping

me while I was visiting the Center of Advanced Computer Studies at Lafayette.

Resumo

Ofuscação de código tem por finalidade dificultar a detecção de propriedades intŕınse-
cas de um algoritmo através de alterações em sua sintaxe, entretanto preservando sua
semântica. Desenvolvedores de software usam ofuscação de código para defender seus
programas contra ataques de propriedade intelectual e para aumentar a segurança do
código. Por outro lado, programadores maliciosos geralmente ofuscam seus códigos para
esconder comportamento malicioso e para evitar detecção pelos anti-v́ırus.

Nesta tese, é introduzido um método para realizar análise com sensitividade ao con-
texto em binários com ofuscamento de chamada e retorno de procedimento. Para obter
semântica equivalente, estes binários utilizam operações diretamente na pilha ao invés de
instruções convencionais de chamada e retorno de procedimento.

No estado da arte atual, a definição de sensitividade ao contexto está associada com
operações de chamada e retorno de procedimento, assim, análises interprocedurais clássi-
cas não são confiáveis para analisar binários cujas operações não podem ser determinadas.
Uma nova definição de sensitividade ao contexto é introduzida, baseada no estado da pilha
em qualquer instrução. Enquanto mudanças em contextos à chamada de procedimento
são intrinsicamente relacionadas com transferência de controle, assim, podendo ser obti-
das em termos de caminhos em um grafo de controle de fluxo interprocedural, o mesmo
não é aplicável para mudanças em contextos à pilha.

Um framework baseado em interpretação abstrata é desenvolvido para avaliar contexto
baseado no estado da pilha e para derivar métodos baseado em contextos à chamada de
procedimento para uso com contextos baseado no estado da pilha. O método proposto
não requer o uso expĺıcito de instruções de chamada e retorno de procedimento, porém
depende do conhecimento de como o ponteiro da pilha é representado e manipulado.

O método apresentado é utilizado para criar uma versão com sensitividade ao contexto
de um algoritmo para detecção de ofuscamento de chamadas de Venable et al.. Resultados
experimentais mostram que a versão com sensitividade ao contexto do algoritmo gera
resultados mais precisos, como também, é computacionalmente mais eficiente do que a
versão sem sensitividade ao contexto.

Abstract

A code obfuscation intends to confuse a program in order to make it more difficult
to understand while preserving its functionality. Programs may be obfuscated to protect
intellectual property and to increase security of code. Programs may also be obfuscated
to hide malicious behavior and to evade detection by anti-virus scanners.

We introduce a method for context-sensitive analysis of binaries that may have obfus-
cated procedure call and return operations. These binaries may use direct stack operators
instead of the native call and ret instructions to achieve equivalent behavior. Since defini-
tion of context-sensitivity and algorithms for context-sensitive analysis has thus far been
based on the specific semantics associated to procedure call and return operations, classic
interprocedural analyses cannot be used reliably for analyzing programs in which these
operations cannot be discerned. A new notion of context-sensitivity is introduced that
is based on the state of the stack at any instruction. While changes in calling-context
are associated with transfer of control, and hence can be reasoned in terms of paths in
an interprocedural control flow graph (ICFG), the same is not true for changes in stack-
context.

An abstract interpretation based framework is developed to reason about stack-
context and to derive analogues of call-strings based methods for the context-sensitive
analysis using stack-context. This analysis requires the knowledge of how the stack, rather
the stack pointer, is represented and on the knowledge of operators that manipulate the
stack pointer.

The method presented is used to create a context-sensitive version of Venable et al.’s
algorithm for detecting obfuscated calls. Experimental results show that the context-
sensitive version of the algorithm generates more precise results and is also computation-
ally more efficient than its context-insensitive counterpart.

List of Figures

1 Example motivating context-sensitive analysis of obfuscated code. p. 20

2 Hasse diagram of ℘({x, y, z}). p. 30

3 Abstractions of ℘(Z). p. 38

4 The Interval abstract domain. p. 39

5 Example of obfuscation of a call instruction. p. 44

6 Example of obfuscation of a ret instruction. p. 45

7 Concrete and abstract stacks. p. 46

8 Sample program. p. 46

9 Control flow graph for sample program in Figure 8. p. 47

10 Possible abstract stacks at some program points. p. 47

11 Abstract stack graph for sample program in Figure 8. p. 48

12 Eclipse interface for DOC. p. 50

13 Abstract stack graph and call-graph for code of Figure 1(a). p. 57

14 Abstract stack graph for the obfuscated code of Figure 1(c) p. 58

15 Example to demonstrate context string derivation. p. 61

16 An x86-like assembly language. p. 70

17 Semantic domains and functions for our semantics. p. 71

18 Transition relation for our semantics. p. 72

19 Pseudo-code for the top-level procedure of our algorithm. p. 78

20 Fluxogram for the top-level procedure of our algorithm. p. 79

21 I# procedure of our algorithm. p. 80

22 Abstracted semantic functions. p. 81

23 push-` procedure of our algorithm. p. 82

24 pop-` procedure of our algorithm. p. 83

25 Obfuscated call using push/ret instructions. p. 84

26 Obfuscated call using push/jmp instructions. p. 86

27 Obfuscated return using pop/jmp instructions. p. 87

28 Time evaluation of the set of hand-crafted, obfuscated programs. p. 93

29 Comparison of number of interpreted instructions between context-sensitive

and context-insensitive analyses. p. 94

30 Evaluation of the size of the value sets between context-sensitive and

context-insensitive analyses. p. 94

31 Histogram of approximations for Win32.Evol.a. p. 95

List of Tables

3 Examples of sequences of open and close contexts for the program of

Figure 15 and their respective context strings. p. 62

4 Examples of contexts and abstract contexts. p. 66

5 Examples of mapping contexts and T-contexts. p. 68

6 Stack contexts and associated values for interprocedural analysis of ob-

fuscated binaries. p. 85

7 Empirical measurements on (a) k -context-abstraction and (b) `-context-

abstraction. p. 91

List of abbreviations

ASG abstract stack graph

AST abstract syntax tree

BDD binary decision diagram

CFG control flow graph

CG call graph

COTS commercial off-the shelf

DOC detector of obfuscated calls

LIFO last in first out

ICFG interprocedural control flow graph

RIC reduced interval congruence

SEH structured exception handling

VSA value set analysis

Mathematical notation

〈X,vX〉 partially ordered set upon domain X

t join operator

u meet operator

℘(X) powerset of X⊔
least upper bound (lub)

d
greatest lower bound (glb)

⊥ least element

> greatest element

lfp least fixed point

(C, α, γ, A) Galois connection between domains C and A

α abstraction map

γ concretization map

O widening operator

X∗ set of finite sequences over X

ε ∈ X∗ empty sequence

(x i) represents the ith element of the sequence x

a.x inserts a in the head of the sequence x

(rest a.x) removes a from the sequence a.x

Y ↓X X th element of the pair Y

s ∈ Σ program state

σ ∈ Σ∗ trace (sequence of program states)

I set of instructions

L set of instructions that open contexts

M set of instructions that close contexts

ν context string

Π maps a trace to its context string

π represents the effect of an individual program state

on the accumulated context string

νk k-context string

ν` `-context string

I∗ set of finite sequences over I

L∗ set of finite sequences of open contexts

Lk k-abstraction of the set of finite sequences of open contexts

L` `-abstraction of the set of finite sequences of open contexts

LT abstract syntax tree of the set of finite sequences of open contexts

αk maps a context string in L∗ to a k-context string in Lk

α` maps a context string in L∗ to a `-context string in L`

φ maps L∗ to LT
L̂asm open contexts for assembly programs

M̂asm close contexts for assembly programs

πasm version of function π for assembly programs

Πasm version of function Π for assembly programs

L̂
`

asm `-abstraction of the set of finite sequences of open contexts

for assembly programs

L̂
k

asm k-abstraction of the set of finite sequences of open contexts

for assembly programs

F concrete function F (F represents any given function)

F# abstract function F

Contents

1 Introduction p. 17

1.1 Motivation . p. 18

1.2 State-of-the-art . p. 21

1.3 Research Objectives . p. 25

1.4 Research Contributions . p. 25

1.5 Organization . p. 26

2 Preliminaries p. 28

2.1 Domain Theory . p. 28

2.1.1 Sets . p. 28

2.1.2 Functions . p. 29

2.1.3 Partial ordering . p. 30

2.1.4 Fixed points . p. 32

2.1.5 Galois connection . p. 33

2.2 Abstract Interpretation . p. 35

2.2.1 Examples of concrete and abstract store domains p. 37

2.3 Disassembly . p. 40

2.4 Code Obfuscation . p. 42

2.5 Abstract Stack Graph . p. 45

2.6 DOC: Detector of Obfuscated Calls . p. 49

3 Proposed algorithm p. 54

3.1 Motivation and Intuition . p. 54

3.2 Context-trace Semantics . p. 59

3.3 Context Abstractions . p. 63

3.3.1 k -Context . p. 65

3.3.2 `-Context . p. 66

3.4 Analysis of Obfuscated Assembly Programs p. 69

3.4.1 Programming language . p. 69

3.4.2 Stack-context . p. 73

3.4.3 Modeling transfer of control . p. 76

3.4.4 Semantic domain and algorithm p. 77

3.4.5 Soundness . p. 80

3.5 Examples . p. 82

3.6 Discussion . p. 87

4 Empirical evaluation p. 89

4.1 Comparison of `- and k- Context Analyses p. 89

4.2 Improvement in Analysis of Obfuscated Code p. 92

4.3 Discussion . p. 95

5 Conclusions and further work p. 96

5.1 Research Outcomes . p. 96

5.2 Directions for Further Work . p. 98

References p. 100

17

1 Introduction

An increase in the development of computer networks and internet technology has

been noticed in recent years. Remote execution, distributed computing and code mobility

have resulted in new computing abilities; however, they raise security and safety problems.

Hosts and networks must be protected from malwares, and programs must be protected

from malicious hosts. A malware may try to gain, steal or damage some information

in a determined target (host). Software developers try to defend their program against

malicious host attacks that usually aim to steal, modify or tamper with the code in order

to take (economic) advantage of it. Both represent harmful threats to the security of

computer networks.

Software protection and malware detection are two major applications of code ob-

fuscation. A code obfuscation intends to confuse a program in order to make it more

difficult to understand while preserving its functionality. Software developers use ob-

fuscation techniques to hide intrinsic information of the algorithm in order to protect

intellectual property and to increase security of code (by making it difficult for others

to identify vulnerabilities). Malware writers, however, use obfuscation to hide malicious

behavior in order to evade detection by anti-virus scanners (BOCCARDO; MANACERO

JÚNIOR.; FALAVINHA JÚNIOR., 2007). Therefore, the design of techniques for an-

alyzing obfuscated code is essentially due to the impossibility of determining if certain

obfuscated code is malicious without its inspection.

Recently, research activity has increased in the area of binary analysis. These analyses

have been motivated to port legacy applications to new platforms, link-time optimization

of executables, verify whether an embedded application conforms to standards, identify

security vulnerabilities that can be exploited by a hacker, analyze whether a binary may

be malicious, and control flow reconstruction.

For Commercial Off-The Shelf (COTS) programs or other third-party programs in

which the source code is not available to the analyst, analysis for malicious (hidden) be-

havior can be performed reliably only on binaries. Even when the source code is available,

1.1 Motivation 18

analyzing the binary is the only true way to detect hidden capabilities, as demonstrated

by Thompson in his Turing Award Lecture (THOMPSON, 1984). Hence, a safety analysis

should be run at the binary level since the binary is the most accurate representation of

a program behavior.

1.1 Motivation

Current methods for analyzing binaries are modeled on methods for analysis of source

code, where a program is decomposed into a collection of procedures, and the analyses

are classified into two types: intraprocedural and interprocedural. In intraprocedural

analysis, the entire program is treated as one function, leading to very significant over-

approximation. In interprocedural analysis, procedures are taken into account and com-

plications can arise when ensuring that calls and returns match one another. Incorrect

combination of call and return nodes creates spurious pathways in the information flow,

where information may flow along a call node to a procedure and then be propagated by

a return node to another call node calling the same procedure.

Classical interprocedural analysis may be performed either by procedure-inlining fol-

lowed by an intraprocedural analysis, or by using the functional approach through proce-

dure summaries, or by providing the calling-context using the call string approach (SHARIR;

PNUELI, 1981). In the procedure-inlining approach, every call to a procedure is replaced

by the body of that procedure. This technique is only feasible for non-recursive proce-

dures, and the control-flow graph (CFG) may grow exponentially in terms of the nesting

depth. In the functional approach through procedure summaries, an effect, a map from

input values to the output values, for every procedure is calculated. The calculation of

the effect requires the analysis of each procedure only a few times in case of recursive

procedures. These procedure effects are then used to perform the analysis. In the call

string approach, procedures are analyzed separately for different invocation flows to the

beginning of its code (its calling contexts). This improves the analysis’ precision for pieces

of code that are executed more than once in different contexts. The analysis of different

call sequences is made by simulating the call stack of an abstract machine which contains

unclosed calling sequences.

Since a binary, albeit disassembled, is not syntactically rich, the identification of pro-

cedure boundaries, parameters, procedure calls, and returns is done by making assump-

tions. Such assumptions consist of the sequence of instructions used at a procedure entry

(prologue), at a procedure exit (epilogue), the parameter passing convention, and the con-

1.1 Motivation 19

ventions to make a procedure call. These assumptions are often referred by researchers

as a ‘standard compilation model.’ The ‘standards’ are compiler specific; they are not

industry standards. Even for a given compiler, the ‘standards’ may vary depending on

the optimization scheme selected. When a binary violates the ‘standards’, the current

methods for context-sensitive interprocedural analysis fail.

Malware detection methods also make assumptions by observing the system calls made

by the program (BERGERON et al., 1999). If the pattern of system calls matches a known

malicious pattern of calls, then the file is deemed malicious. Symantec’s Bloodhound

technology, for example, uses classification algorithms to compare the system calls made

by the program under inspection against a database of calls made by known viruses and

clean programs (SYMANTEC, 1997). When a malware obfuscates its system calls, such

malware detection methods fail.

This dissertation presents a method for performing context-sensitive analyses of bi-

naries without requiring any particular convention for the layout of the procedure code

in memory or the use of any particular conventions for procedure calls. More specifi-

cally, the proposed method does not require the use of explicit call and ret instructions,

but depends upon the knowledge of how the stack pointer and instruction pointer are

represented, which direction the stack grows, and the static identification of operators

manipulating the stack pointer. Although it is not clear how one can obfuscate an in-

struction pointer, one may easily obfuscate a stack pointer by representing it using another

register or a memory location. The proposed method requires that the register or mem-

ory location used to represent a stack pointer must be known. Similarly, even though in

most architectures stack grows towards lower memory addresses, the convention can be

altered if a programmer is representing his own stack. The intended analysis assumes the

knowledge of this convention.

Figure 1(a) contains a sample code that presents the motivation. It is a simplified

program, essentially showing only the call and return structure. Figure 1(b) shows the

control flow graph (CFG) of this program. The graph is created by assuming that the

target of a call instruction represents the entry point of a procedure and a ret instruction

returns from call to the closest preceding entry point. The edges in this graph represent call

and return edges. Context-sensitive interprocedural analysis algorithms require pairing

the edges such that information flowing from one call node is not propagated to another

call node (SHARIR; PNUELI, 1981) via a mismatched return edge. In the graph, the

type of arrow (solid or dashed) determines the correct pairing.

1.1 Motivation 20

(a) Sample code. (b) CFG. (c) Obfuscated version.

Figure 1: Example motivating context-sensitive analysis of obfuscated code.

Figure 1(c) shows an obfuscated version of the sample program. It is generated by re-

placing every call instruction by a sequence of two push instructions and a ret instruction,

where the first push pushes the address of the instruction after the call instruction (the

return address of the procedure call), the second push pushes the target address of the call,

and the ret instruction causes execution to jump to the target address of the call. There

are other ways to achieve the equivalent behavior (LAKHOTIA; KUMAR; VENABLE,

2005). Since such a program may not have a call instruction, it does not provide any clues

in finding procedure entry points. Current technologies may infer that this program has

only one procedure (consisting of the entire code) (IDAPRO, 2009). More importantly,

most works on analysis of binaries will treat the ret instructions as though they are re-

turning to the caller, thus generating an incorrect CFG. As a result, any analysis based on

this CFG will also be incorrect. Such non-standard methods of making a call are explicitly

used by malicious programs to defeat automated analysis (BOCCARDO; MANACERO

JÚNIOR.; FALAVINHA JÚNIOR., 2007),(CHRISTODORESCU; JHA, 2003),(LAKHO-

TIA; SINGH, 2003),(SZÖR; FERRIE, 2001).

The obfuscation shown in Figure 1(c) is näıve and presented to demonstrate the

concept. More obfuscations, although still trivial, may be performed by shuffling the two

1.2 State-of-the-art 21

push instructions among other code. More complex obfuscations may be achieved by not

using push and ret instructions; instead one may use move, increment, and decrement

operations directly on the stack pointer to perform equivalent functions.

Binaries may not adhere to accepted conventions/assumptions because its creator,

whether a compiler or a programmer, wishes to deter others from analyzing it. Such

deliberate violation of assumptions, conventions, or for that matter standards, to make

the binary harder is termed as obfuscation. It is becoming increasingly common to obfus-

cate code to protect intellectual property (LINN; DEBRAY, 2003),(COLLBERG; THOM-

BORSON; LOW, 1997),(WROBLEWSKI, 2002). However, the code may also be obfus-

cated to hide malicious intent (CHRISTODORESCU; JHA, 2003),(LAKHOTIA; SINGH,

2003),(SZÖR; FERRIE, 2001). Most malwares today use a variety of obfuscations to deter

its disassembly, analysis, or reverse engineering.

The foundations of the approach presented in this dissertation come from previous

work of our research group in analyzing programs with obfuscated calls (VENABLE et al.,

2005),(LAKHOTIA; KUMAR; VENABLE, 2005). First, Lakhotia and Kumar (LAKHO-

TIA; KUMAR, 2004) described a way to detect stack related obfuscations using abstract

stack graph. Their work addresses only the evaluation of operations that can be mapped

to stack’s push and pop instructions. Although that approach can be applied to several

classes of programs, it fails in cases where the stack is manipulated through memory con-

tents (registers, stack or heap). Venable et al. (VENABLE et al., 2005) developed an

improved algorithm that could track stack manipulations where the stack pointer may be

saved and restored in memory or registers. Venable et al.’s work assumed that the binary

could not be decomposed into procedure boundaries. As a result, they essentially per-

form intraprocedural analysis on the entire program. The resulting analysis is expensive

and leads to very significant over approximation. These limitations are overcome by the

context-sensitive algorithm presented in this dissertation.

1.2 State-of-the-art

This section examines the state-of-the-art related to binary analysis focusing on in-

terprocedural analysis and analysis of malicious/obfuscated programs, and also exposes

their limitations.

Binary analyses have been motivated by several application fields such as to port

legacy applications to new platforms (LARUS; SCHNARR, 1995), (CIFUENTES; FRABO-

1.2 State-of-the-art 22

ULET, 1997a, 1997b), (CIFUENTES; SIMON; FRABOULET, 1998), (MYCROFT, 1999),

(AMME et al., 2000), link-time optimization (GOODWIN, 1997),(SCHWARZ; DEBRAY;

ANDREWS, 2001),(DEBRAY; MUTH; WEIPPERT, 1998),(SRIVASTAVA; WALL, 1993),

verify whether an embedded application conforms to standards (VENKITARAMAN;

GUPTA, 2004), identify security vulnerabilities that can be exploited by a hacker (BERG-

ERON et al., 1999, 2001), (BALAKRISHNAN, 2007), (MATTHEW et al., 2005), (REPS;

BALAKRISHNAN; LIM, 2006), (BALAKRISHNAN; REPS, 2007), (REPS; BALAKR-

ISHNAN, 2008), analyze whether a binary may be malicious (CHRISTODORESCU;

JHA, 2003), (LAKHOTIA; KUMAR; VENABLE, 2005), (LAKHOTIA; KUMAR, 2004),

(BACKES, 2004), (VENABLE et al., 2005), and control flow reconstruction (KINDER;

VEITH; ZULEGER, 2009).

Since this dissertation is concerned with context-sensitive analysis, this section will

focus on prior research related to the following categories: interprocedural analysis (in gen-

eral), interprocedural analysis of binary programs, and analysis of malicious/obfuscated

programs.

Context-sensitive interprocedural data-flow analysis of high-level languages has been

an active area of research. Most of these efforts, represented by (REPS; HORWITZ; SA-

GIV, 1995), (SAGIV; REPS; HORWITZ, 1995), (COUSOT; COUSOT, 2002), (MÜLLER-

OLM; SEIDL, 2004), (BALL; MILLSTEIN; RAJAMANI, 2005), (XIE; AIKEN, 2005),

(GULWANI; TIWARI, 2007), have focused on special classes of problems for high-level

languages. The general strategy they use falls within the two approaches proposed by

Sharir and Pnueli (SHARIR; PNUELI, 1981), the call-string approach or the procedure

summaries approach.

In the call-string approach data flow values are separated based on their calling con-

text (SHARIR; PNUELI, 1981). The approximate call-string approach offers an efficient

and flexible method for computing interprocedural analysis at the cost of precision. For

non-recursive programs, call-strings are bounded by the length K, where K is the number

of distinct call-sites in the longest call-chain. For recursive programs, and when the lattice

of data flow values V is bounded, this method requires strings of length K × (|L| + 1)2.

Recent work by Karkare and Khedker (KARKARE; KHEDKER, 2007),(KHEDKER;

KARKARE, 2008) improves this bound to K×(|L|+1). They achieved this improvement

by terminating the call string construction when the data flow values stabilize, instead of

using the length of the call-string.

In the procedure summary approach, a summary that represents the behavior of the

1.2 State-of-the-art 23

procedure parametrized by any information about its input variables is calculated for each

procedure. The construction of the summary is made by analyzing each procedure once or

a few times in case of recursive procedures. Although this method guarantees precision, it

is not efficient due to calculations of procedure summaries being high in time and complex

in space (AHO et al., 2006). Moreover, there is no automatic way to efficiently construct

or even represent these procedure summaries, and abstraction specific techniques are

required. The original formalism proposed by Sharir and Pnueli (SHARIR; PNUELI,

1981) for computing procedure summaries was limited to finite lattices of dataflow facts.

Sagiv, Reps and Horwitz generalized the Sharir-Pnueli framework to build proce-

dure summaries using context-free graph reachability (REPS; HORWITZ; SAGIV, 1995).

Müller-Olm and Seidl (MÜLLER-OLM; SEIDL, 2004) subsumes the problem of linear

constant propagation considered by Sagiv et al. (SAGIV; REPS; HORWITZ, 1995), but

does not deal with aliasing. Ball et al. (BALL; MILLSTEIN; RAJAMANI, 2005) intro-

duces auxiliary variables to record the input values of the procedure and uses predicates

defined by both the program variables and the auxiliary variables. The result of the anal-

ysis can then be interpreted as a relation between the auxiliary variables (input values)

and output values. However, the predicates might not be expressive enough to capture the

precise summary. Xie and Aiken (XIE; AIKEN, 2005) specialized the summary generation

for a particular problem in order to discover which contexts are relevant. They created

summaries for checking correct use of locks using boolean satisfiability (SAT) procedures

to enumerate all the relevant calling contexts. Recently, Gulwani and Tiwari (GULWANI;

TIWARI, 2007) introduced a method for generating precise procedure summaries in the

form of constraints on the input variables of the procedure that must be satisfied for some

appropriate generic assertion involving output variables of the procedure to hold at the

end of the procedure. Their method is based upon computing the weakest preconditions

of a generic assertion. To guarantee termination of the analysis, they performed a second

order unification to strengthen and simplify the weakest preconditions.

The call-string approach has two advantages as compared to the procedure summary

approach. First, it is possible to deal with abstract domains of infinite cardinality. Sec-

ondly, it is easily possible to reduce the complexity of the analysis by selecting small values

for k. The disadvantage is that analyses using the call string approach can be less precise

than those using the procedure summary approach. By encoding the call strings into

the analysis domain the updating of the call strings has to be done during the analysis,

consequently, increasing the cost in time and space.

The classic interprocedural control flow graph (ICFG) based algorithms for com-

1.2 State-of-the-art 24

puting function summary require a priori identification of procedure entries and exits.

These methods cannot directly be adapted for our needs because call obfuscations pre-

vent determination of procedure boundaries, violating the pre-requisite. Reps et al.’s

weighted pushdown system based interprocedural analysis, which also computes function

summaries (REPS et al., 2005), does not use ICFGs. Indeed our representation of con-

text using the state of stack is analogous to Reps et al.’s use of stack of a pushdown

automata (REPS et al., 2005). Lal and Reps improve the computation of the summary

information (LAL; REPS, 2006) by taking advantage of the specific semantics associated

to procedure call and return. Use of weighted pushdown systems for analysis of obfuscated

binaries may be a productive avenue for future research.

The call-string approach follows the execution of a program. Algorithms based on this

approach have classically been modeled to determine a change of context based on the

semantics of procedure call/return and are described using ICFG. However, as we demon-

strate from our adaptation, the call-string method does not require a priori knowledge of

procedure boundaries, nor does it depend on the semantics of procedure invocation. As is

done for context-sensitive computation of targets of indirect calls using points-to analysis,

the call-graph used for call-string approach may be computed on the fly (EMAMI; GHIYA;

HENDREN, 1994),(WHALEY; LAM, 2004),(ZHU, 2005),(ZHU; CALMAN, 2004),(WIL-

SON; LAM, 1995). Determining transfer of control based on contents of memory or

register is analogous to computing the points-to relation for higher languages. However,

since memory addresses are linearly ordered, the resulting “points-to” sets in our problem

context can be abstracted using a linear function. Thus, our method is analogous in spirit,

though not in letter, to context-sensitive points-to analysis.

Interprocedural analysis of binaries has also received attention for post-compile time

optimization (SRIVASTAVA; WALL, 1993) and for analyzing binaries with the intent to

detect vulnerabilities not visible in the source code, such as those due to memory map-

ping of variables (BALAKRISHNAN, 2007). Goodwin uses procedure summary approach

to interprocedural analysis to aid link-time optimization (GOODWIN, 1997). Balakrish-

nan (BALAKRISHNAN, 2007) uses the call-string approach. As mentioned earlier, these

methods assume a certain compiler model to identify code segments related to performing

procedure calls, such as that supported by IDA Pro (IDAPRO, 2009). In contrast, we split

the semantics of call and ret instructions. We model their affect on the “context” separate

from their affect on the“transfer of control.” The context is represented by the state of the

stack and is modeled by an instruction’s affect on the stack pointer. The transfer of control

is analyzed using Balakrishnan and Reps’ Value-Set Analysis (VSA) (BALAKRISHNAN;

1.3 Research Objectives 25

REPS, 2004),(BALAKRISHNAN, 2007).

While our work is focused on deobfuscation of programs, there is an active body

of work in the opposite direction. There has been significant work in obfuscation of

programs with the intent to thwart static analysis (LINN; DEBRAY, 2003),(COLLBERG;

THOMBORSON, 2002). Such obfuscations may be used by benign as well as malicious

programs for the same purpose, to make it difficult for an analyst to detect its function or

its underlying algorithm. The obfuscation techniques work by attacking various phases in

the analysis of a binary (LAKHOTIA; SINGH, 2003). For example, a metamorphic virus,

a virus that transforms its own code as it propagates, may use procedure call obfuscations

to enable its transformation operation. The Win32.Evol virus, a metamorphic virus,

uses call-obfuscation just for this purpose. A side-effect of this is that the virus defeats

any interprocedural analysis that depends on a traditional compiler model (LAKHOTIA;

SINGH, 2003).

The rapid increase in using obfuscation techniques to spread malware has also trig-

gered efforts to analyze obfuscated code. There have been efforts to use semantics based

methods for detecting malware (DALLA PREDA et al., 2007),(CHRISTODORESCU;

JHA, 2003),(BERGERON et al., 2001). Term-rewriting has been proposed to normalize

variants of a metamorphic malware (WALENSTEIN et al., 2006). None of these works

specifically addresses analysis of obfuscated programs that do not conform to the standard

compilation model.

1.3 Research Objectives

The goal of this research is to design a context-sensitive analysis based on program

semantics and abstract interpretation framework resilient from call and ret obfuscations

attacks. The objective is that such analysis may find a purpose in assisting obfuscated

code analyzers by providing more reliable analysis results for obfuscated code.

1.4 Research Contributions

The main contributions of this dissertation may be summarized as follows:

• It introduces the concept of stack context, used in lieu of calling-context, to perform

context-sensitive analysis of a binary program when the binary may be obfuscated

or does not adhere to a standard compilation model.

1.5 Organization 26

• It adapts for use with stack context prior work on performing context-sensitive

analysis using calling-contexts. Using abstract interpretation, a k-context abstrac-

tion is derived that generalizes Sharir and Pnueli’s k-suffix call-strings abstrac-

tions (SHARIR; PNUELI, 1981). Unlike Sharir and Pnueli’s formulation this gener-

alization does not require transfer of control, an intrinsic part of semantics of proce-

dure call and return. Similarly, an `-context abstraction is derived that generalizes

for use with stack-context Emami et al.’s strategy of abstracting calling-contexts by

reducing cycles due to recursion (EMAMI; GHIYA; HENDREN, 1994), thus lead-

ing the way to the use of binary decision diagrams (BDDs) for making the analysis

scalable (ZHU, 2005),(WHALEY; LAM, 2004).

• It presents a concrete application of the proposed method by creating a context-

sensitive version of Venable et al.’s algorithm (VENABLE et al., 2005) that detects

obfuscated calls. The resulting analysis is shown to be sound.

• It presents empirical results comparing the context-sensitive and insensitive versions

of Venable et al.’s algorithm. The empirical results show that the context-sensitive

analysis requires significantly less time and also yields better (more precise) results.

1.5 Organization

Chapter 2 provides the background necessary for designing the context-sensitive anal-

ysis of obfuscated executables. The background consists of domain theory, followed by

a brief introduction to abstract interpretation. An overview of disassembly methods,

code obfuscation, abstract stack graph (ASG) and Venable’s algorithm (VENABLE et

al., 2005) is also presented.

Chapter 3 introduces context-trace semantics, a trace semantics in which context is

made explicit, followed by a generalization of Sharir and Pnueli’s (SHARIR; PNUELI,

1981) k-suffix method for abstracting calling-contexts and a generalization of Emami

et al.’s method of abstracting calling-contexts by reducing recursive cycles (EMAMI;

GHIYA; HENDREN, 1994). It also presents our algorithm for analysis of binaries, which

adapts the concept of context-trace to binaries and also summarizes the use of Balakrish-

nan and Reps Value-Set Analysis (BALAKRISHNAN; REPS, 2004),(BALAKRISHNAN,

2007) to help with determining transfer of control in assembly programs. Proving aspects

are also shown by using the abstract interpretation theory.

Chapter 4 presents empirical evaluation of the context sensitive and insensitive ver-

1.5 Organization 27

sions of Venable’s algorithm. The experiments show that the context-sensitive version

of the algorithm generates more precise results and is also computationally more effi-

cient than the context-insensitive version. Experimental results also show that `-context

abstraction is more efficient and precise than k-context abstraction.

Chapter 5 summarizes the major contributions of this dissertation and briefly describes

future works that we would like to explore.

28

2 Preliminaries

This chapter includes the background necessary to develop our proposed algorithm.

Section 2.1 presents the domain theory background, recalling the basic notions of sets,

functions and partial orderings (DAVEY; PRIESTLEY, 1990),(GIERZ et al., 1980),(GRÄ-

TZER, 1978). Section 2.2 provides the abstract interpretation framework (COUSOT;

COUSOT, 1977, 1979). Section 2.3 presents disassembly methods and their relationship to

static analysis. Section 2.4 provides information about code obfuscation. Section 2.5 sum-

marizes the Abstract Stack Graph (ASG) from Lakhotia et al. (LAKHOTIA; KUMAR;

VENABLE, 2005). Finally, section 2.6 presents a description of Venable’s algorithm.

2.1 Domain Theory

2.1.1 Sets

A set is a collection of elements. The standard notation x ∈ C declares that x is an

element of the set C. The cardinality of a set C represents the number of its elements,

and it is represented as |C|. Let C and A be two sets, where C is a subset of A represented

as C ⊆ A, if every element of C belongs to A. When C ⊆ A and there exists at least one

element of A that does not belong to C, we say C is properly contained in A, represented

C ⊂ A. Two sets C and A are equal, represented C = A, if C is a subset of A and

vice-versa, i.e., C ⊆ A and A ⊆ C. Two sets C and A are different, represented C 6= A,

if there exists an element in C (in A) that does not belong to A (to C). Let ∅ represent

the empty set, namely the set without any element. In this case, for every element x we

have x /∈ ∅ and for every set C we have ∅ ⊆ C.

The set C ∪ A represents elements belonging to C or to A, and it is called the union

of C and A. Its definition is given as C ∪ A def
= {x | x ∈ C ∨ x ∈ A}. The set C ∩ A

containing the elements belonging both to C and A identifies the intersection of C and

A, and it is defined as C ∩ A def
= {x | x ∈ C ∧ x ∈ A}. Two sets C and A are disjoint if

their intersection is the empty set, i.e., C ∩ A = ∅. Let C \ A denote the set of elements

2.1 Domain Theory 29

of C that do not belong to A, formally C \A def
= {x | x ∈ C ∧ x /∈ A}. The powerset ℘(C)

of a set C is defined as the set of all possible subsets of C :
def
= {A | A ⊆ C}.

An important concept that can be defined in terms of sets is pairing. For two objects x

and y, their pairing is written (x, y). Pairing is useful for defining another set construction,

the product construction. For sets C and A, their product C × A is the set of all pairs

built from C × A, and it is defined as C × A def
= {(x, y) | x ∈ C ∧ y ∈ A}. Both pairing

and products can be generalized from their binary formats to n-tuples and n-products.

A form of union construction on sets that keeps the members of the respective sets

C and A separate is called disjoint union, and it is defined as C + A
def
= {(0, x) | x ∈

C} ∪ {(1, y) | y ∈ A}. Ordered pairs are used to “tag” the members of C and A so that it

is possible to examine a member and determine its origin.

2.1.2 Functions

Let C and A be two sets. A function f from C to A is a relation between C and A

such that for each x ∈ C there exists exactly one y ∈ A such that (x, y) ∈ f . In this

case, we write f x = y. Usually the notation f : C → A is used to denote a function

from C to A, where C is the domain of f , and A is the co-domain of function f . The

set f X
def
= {f x | x ∈ X} is the image of X ⊆ C under f . In particular, the image of

the domain, i.e., f C, is called the range of f . The set f−1(X)
def
= {y ∈ C | f y ∈ X} is

called the reverse image of X ⊆ A under f . If there exists an element x ∈ C such that

the element f x is not defined, the function f is said to be partial, otherwise it is total.

Functions can be combined using the composition operation. For f : C → A and

g : A → E, g ◦ f is the function with domain C and codomain E such that ∀x ∈ C,

g ◦ f x = g(f x). Composition of functions is associative: for f and g as given above and

h : E → F , h ◦ (g ◦ f) = (h ◦ g) ◦ f . The notation fn represents the composition of the

function f n times.

Functions may be classified by their mappings. Some classifications are:

• one-one: function f : C → A is an one-one (or injective) function if and only if

∀x1 ∈ C and x2 ∈ C, f x1 = f x2 implies x1 = x2;

• onto: function f : C → A is an onto (or surjective) function if and only if A = {y |
there exists some x ∈ C such that f x = y};

• bijective: function f : C → A is a bijective function if f is both injective and

2.1 Domain Theory 30

surjective;

• identity : function f : C → C is an identity function for C if and only if ∀x ∈ C,

f x = x.

2.1.3 Partial ordering

A partially ordered set (or poset) formalizes the intuitive concept of ordering, sequenc-

ing, or arranging of the elements of a set. A poset consists of a set along with a binary

relation that describes, for certain pairs of elements in the set, the requirement that one

of the elements must precede the other. For a domain C, a binary relation R ⊆ C × C
(or R : C × C → B) is represented by the infix symbol vC , or just v, if the domain of

usage is clear. For x, y ∈ C, we read x v y as “x is less defined than y.”

Definition 2.1.1 A binary relation v: C × C → B is a ‘partial ordering’ upon a set C,

also represented by 〈C,v〉, if and only if v is:

• reflexive: ∀x ∈ C : x v x;

• antisymmetric: ∀x, y ∈ C : x v y ∧ y v x⇒ x = y;

• transitive: ∀x, y, z ∈ C : x v y ∧ y v z ⇒ x v z.

A partially ordered set of elements can be represented by an acyclic graph, where

x v y when an arc exists from element x to element y and x is beneath y on the page.

For example, Figure 2 shows the finite partially ordered set graph (Hasse diagram) for

℘({x, y, z}), which is partially ordered by subset inclusion.

Figure 2: Hasse diagram of ℘({x, y, z}).

Taking into account reflexivity, antisymmetry and transitivity, the graph of Figure 2

completely describes partial ordering.

2.1 Domain Theory 31

Definition 2.1.2 For a partial ordering v on C, ∀x, y ∈ C, the expression xt y denotes

the element in C (if it exists) such that:

• x v x t y and y v x t y.

• ∀z ∈ C, x v z and y v z ⇒ x t y v z.

The element x t y is called the join of x and y. The join operation produces the

smallest element that is larger than both of its arguments. A partial ordering might not

have joins for all of its pairs. The partial ordering of Figure 2 has joins defined for all

pairs.

An intersection set operation, the meet, is defined in a similar way. We write xu y to

denote the best defined element that is smaller than both x and y. The partial ordering

of Figure 2 has meets defined for all pairs.

Definition 2.1.3 A set C, partially ordered by v, is a ‘lattice’ if and only if ∀x, y ∈ C,

both x t y and x u y exist.

The partial ordering of Figure 2 is an example of a lattice. For any set X, 〈℘(X), ⊆〉
is a lattice under the usual subset ordering ⊆, in which join is the set union and meet is

the set intersection. The concepts of join and meet can be generalized to operate over a

(possibly infinite) set of arguments rather than just two.

Definition 2.1.4 For a set C partially ordered by v and a subset X of C,
⊔
X denotes

the element of C (if it exists) that satisfies the following conditions:

• ∀x ∈ X, x vC
⊔
X.

• ∀y ∈ C, ∀x ∈ X, x vC y ⇒
⊔
X vC y.

The element
⊔
X is called the least upper bound (lub) of X. In the following, the dual of

lub, the greatest lower bound (glb) (denoted by
d
X), is defined.

Definition 2.1.5 For a set C partially ordered by v and a subset X of C,
d
X denotes

the element of C (if it exists) that satisfies the following conditions:

• ∀x ∈ X,
d
X vC x.

2.1 Domain Theory 32

• ∀y ∈ C, ∀x ∈ X, y vC x⇒ y vC
d
X.

Definition 2.1.6 A set C partially ordered by v is a ‘complete lattice’ if and only if for

all subsets X of C, both
⊔
X and

d
X exist.

A complete lattice C is a partially ordered set 〈C,v〉 such that all subsets have least

upper bounds as well as greatest lower bounds in which the notation ⊥ =
d
C is the least

element and > =
⊔
C is the greatest element. The partial ordering of Figure 2 has the

least element ∅ and the greatest element {x, y, z}. In programming language semantics,

we use A⊥ to define lifted domains, where A⊥ = A ∪ {⊥}. The special value ⊥ denotes

nontermination or “no value at all.”

Definition 2.1.7 For a set C partially ordered by vC and for a set A partially ordered

by vA, the function f : C → A is monotone if for each x, y ∈ C : x vC y implies that

f(x) vA f(y).

2.1.4 Fixed points

Definition 2.1.8 Let f : C → C be a function on a poset C, an element c ∈ C is a fixed

point of f if and only if f c = c. Further, c is the least fixed point of f if, for all d ∈ C,

f d = d implies c v d.

The least fixed point of a function f : C → C, denoted lfpv f , is the fixed point

which is less than or equal to all other fixed points according to some partial order. The

notion of greatest fixed point, denoted gfpv f , is dually defined. Let us recall the well

known Knaster-Tarski’s fixed point theorem.

Theorem 2.1.9 Let (C,v) be a complete lattice, then the least fixed point of a monotone

function f : C → C exists and is defined to be lfpv f =
⊔
n ∈ N fn ⊥, where fn =

f ◦ f ◦ ... ◦ f , n times.

Hence, the least fixed point of a monotone function on a complete lattice can be

computed as the limit of the iteration sequence obtained starting from the bottom of the

complete lattice.

2.1 Domain Theory 33

2.1.5 Galois connection

A Galois connection is a particular correspondence between two partially ordered sets.

Sometimes calculations on a poset C may be too costly or even uncomputable, motivating

the replacement of C by a simpler poset A.

Definition 2.1.10 Two complete lattices 〈C,vC〉 and 〈A,vA〉 and two monotone func-

tions α : C → A and γ : A→ C such that:

∀c ∈ C : c vC γ(α c) and (2.1)

∀a ∈ A : α(γ a) vA a (2.2)

form a Galois connection, equivalently represented by (C, α, γ, A).

This definition of Galois connection is equivalent to the one of adjunction between C

and A, i.e., ∃α : C → A and γ : A→ C such that ∀a ∈ A, c ∈ C : α c vA a⇔ c vC γ a.

The function α(γ) is the left (right) adjoint of γ(α). It is enough to specify either α or γ

map because in any Galois connection the left adjoint map α determines uniquely the right

adjoint map γ and vice versa. Given the left adjoint α, the right adjoint is determined as

γ a =
⊔
C{c ∈ C | α c vA a}; or given the right adjoint γ, the left adjoint is determined as

α c =
d
A{a ∈ A | c vC γ a}. Two complete lattices, C and A, form a Galois connection

(C, α, γ, A) iff α is additive or iff γ is coadditive. A Galois connection is called Galois

insertion when α is surjective (or, equivalently, γ is injective). According to Galois theory,

given a Galois connection (C, α, γ, A), a function f# : A → A is a sound approximation

of a function f : C → C when α◦f vA f# ◦α, or equivalently, f ◦γ vC γ ◦f#. When the

abstraction and concretization maps are obvious from context, we denote C v A to mean

that ∃α, γ such that (C, α, γ, A) is a Galois connection. We call A1 v A2 v . . . v An a

chain of Galois connections.

It is possible to have analyses for the individual components of a composite structure

and we may want to combine them into an analysis for the whole structure. The following

summarizes a catalogue of combination techniques of Galois connections from (NIELSON;

NIELSON; HANKIN, 1999).

Sequential composition. A program analysis can be developed in stages starting with

a complete lattice (C0,v) fairly closely related to the semantics and introducing a com-

plete lattice (C1,v) related to C0 by a Galois connection (C0, α1, γ1, C1). This step can

2.1 Domain Theory 34

then be repeated n times, stopping when certain analysis with the required computational

properties is obtained. Formally, let (C0, α1, γ1, C1) and (C1, α2, γ2, C2) represent Galois

connections, then (C0, α2 ◦ α1, γ2 ◦ γ1, C2) is also a Galois connection, where α2 ◦ α1 and

γ2 ◦ γ1 form an adjunction, i.e., α2(α1 c0) v c2 ⇔ α1 c0 v γ2 c2 ⇔ c0 v γ1(γ2 c2).

Independent attribute. This method is applied when a combination of several analyses

of individual components of a structure is desired. Let (C1, α1, γ1, A1) and (C2, α2, γ2, A2)

be Galois connections. The independent attribute will then give rise to a Galois connection

(C1 × C2, α, γ, A1 × A2), where α(c1, c2) = (α1 c1, α2 c2), and γ(a1, a2) = (γ1 a1, γ2 a2).

To verify that this defines a Galois connection we calculate

α(c1, c2) v (a1, a2)⇔ (α1 c1, α2 c2) v (a1, a2)

α1 c1 v a1 ∧ α2 c2 v a2 ⇔ c1 v γ1 a1 ∧ c2 v γ2 a2

(c1, c2) v (γ1 a1, γ2 a2)⇔ (c1, c2) v γ(a1, a2)

where α and γ forms an adjunction if and only if (C1 × C2, α, γ, A1 × A2) is a Galois

connection.

Total function space. If C is a complete lattice then so is the total function space S → C

for S being a set (NIELSON; NIELSON; HANKIN, 1999). Let (C, α, γ, A) be a Galois

connection and S be a set, then we obtain a Galois connection (S → C, α′, γ′, S → A)

by taking α′ f = α ◦ f and γ′ g = γ ◦ g, in which f is a function from S → C and g

is a function from S → A. To verify that this defines a Galois connection we have that

α′ and γ′ are monotone functions because α and γ are monotone functions; furthermore

γ′(α′ f) = γ ◦ α ◦ f w f and α′(γ′ g) = α ◦ γ ◦ g v g.

Monotone function space. The monotone function space between two complete lattices

is a complete lattice (NIELSON; NIELSON; HANKIN, 1999). Let (C1, α1, γ1, A1) and

(C2, α2, γ2, A2) be Galois connections. We then obtain the Galois connection (C1 →
C2, α, γ, A1 → A2) by taking α f = α2 ◦ f ◦ γ1 and γ g = γ2 ◦ g ◦ α1, where α and γ

functions are monotone because α2 and γ2 are monotone functions. Next, we calculate

γ(α f) = (γ2 ◦ α2) ◦ f ◦ (γ1 ◦ α1) w f , and α(γ g) = (α2 ◦ γ2) ◦ g ◦ (α1 ◦ γ1) v g using the

monotonicity of f : C1 → C2 and g : A1 → A2.

2.2 Abstract Interpretation 35

So far the constructions have shown how to combine Galois connections dealing with

individual components of the data into Galois connections dealing with composite data.

The next method shows how two analyses dealing with the same data can be combined

into one analysis. This amounts to performing two analyses in parallel.

Direct product. Let (C, α1, γ1, A1) and (C, α1, γ1, A2) be Galois connections. The direct

product of the two Galois connections will be the Galois connection (C, α, γ, A1 × A2),

where α and γ are given by α c = (α1 c, α2 c) and γ(a1, a2) = γ1 a1 u γ2 a2. To verify

that this defines a Galois connection we have:

α c v (a1, a2)⇔ α1 c v a1 ∧ α2 c v a2 ⇔ c v γ1 a1 ∧ c v γ2 a2 ⇔ c v γ(a1, a2)

where α and γ is an adjunction if and only if (C, α, γ, A1 × A2) is a Galois connection.

2.2 Abstract Interpretation

Abstract interpretation is a unified framework for static program analysis (COUSOT;

COUSOT, 1977, 1979). Static program analysis is an extensively used technique for au-

tomatically predicting the set of values or behaviors arising dynamically at runtime when

executing a program on a computer. Since these sets are in most cases not computable,

approximations are necessary. This framework allows the systematic derivation of data

flow analyses and provides methods to prove their correctness and termination. In most

general terms, abstract interpretation is a theory of fixed point approximation.

Abstract interpretation has been applied to the systematic construction of methods

and effective algorithms to approximate undecidable or very complex problems in com-

puter science, such as the semantics, the proof, the static analysis, and the verification

of safety and security of software or hardware computer systems. In particular, static

analysis by abstract interpretation can automatically infer dynamic properties of com-

puter programs. For the past years, it has been very successful in automatically verifying

complex properties of real-time and safety-critical embedded systems (COUSOT, 1996).

An analysis may be derived in stages, starting from concrete semantics to abstracted

semantics that satisfies computational properties. Soundness of the analysis is demon-

strated by creating Galois connections between the domains of the successive stages.

Galois connections may also be used to order two or more analyses on their precision.

The concrete semantics, represented by S, can be expressed by the least fixed point

2.2 Abstract Interpretation 36

of a monotone function f : C → C, in which C is the concrete domain, i.e., the poset of

mathematical objects on which the program runs. The ordering relation encodes relative

precision, in which c1 v c2 denotes that c1 is a more precise (concrete) description than

c2. Approximation is encoded by an abstract domain 〈A,vA〉 which is a poset of abstract

values that represent some approximated properties of concrete objects. Also in the

abstract domain the ordering relation models relative precision, in which a1 v a2 denotes

that a1 is a better approximation (i.e., more precise) than a2.

Concrete and abstract domains are related through a Galois connection (C, α, γ, A).

The function α : C → A is called the abstraction function, and the function γ : A→ C is

the concretization function. We say that A is an abstraction of C and C is a concretization

of A. The abstraction and concretization maps express the meaning of the abstraction

process, where α c is the abstract representation of c, and γ a represents the concrete

meaning of a. Thus, α c vA a and, equivalently, c vC γ a means that a is a sound

approximation in A of c.

Given a Galois connection (C, α, γ, A), the abstract semantics, represented by S#, is

obtained by replacing the function f : C → C, used to compute S, with a monotone

abstract semantic function f# : A → A that correctly mimics the behavior of f in the

domain properties expressed by A. Accordingly with the Galois theory, the function

f# : A→ A is a sound approximation of a function f : C → C when α ◦ f vA f# ◦ α, or

equivalently, f ◦ γ vC γ ◦ f#. The abstract semantics are also a least fixed point of f#

(thanks to the fixed point transfer theorem of (TARSKI, 1955)). A function f# defined

as α ◦ f ◦ γ is a safe approximation of f . Further, when (C, α, γ, A) is a Galois insertion,

the function α ◦ f ◦ γ is also the best approximation of f .

Following (COUSOT; COUSOT, 2004), a program may be formalized as a graph or

as a transition system τ = 〈Σ,Σi, t〉, where Σ is a set of states, Σi ⊆ Σ denotes the set

of initial states and t ⊆ Σ × Σ defines the transition relation between states. A finite

partial trace σ ∈ Σ∗ is a sequence of program states s0...sn such that s0 ∈ Σi and for

all i ∈ [0, n) : (si, si+1) ∈ t. The set of all such finite partial traces is called the trace

semantics of the program and is given by the least fixed point of the semantic transformer

F :

F T = Σi ∪ {σ.s.s′ | σ.s ∈ T ∧ 〈s, s′〉 ∈ t}

where T is a set of finite partial traces. The domain of this trace semantics is ℘(Σ∗).

2.2 Abstract Interpretation 37

Hence, the least fixed point (lfp) of F is as follows:

lfpv⊥ F =
⊔
n≥0

Fn ⊥

If Abs is an abstract domain, i.e., (℘(Σ∗), α, γ, Abs) is a Galois connection, then F# :

Abs → Abs is sound w.r.t F . It can be shown that ∀n ≥ 0 : α(Fn ⊥) vAbs F#n ⊥.

Therefore, it follows that α (lfpv⊥ F) = α (
⊔
n≥0Fn ⊥) =

⊔
n≥0 α(Fn ⊥) =

⊔
n≥0F#n ⊥ =

lfpv⊥ F#n
. This is known as the fixed point transfer theorem (COUSOT; COUSOT, 1979).

The usual Kleene iteration sequence is known to converge to the least fixed point of

F , however the sequence need not stabilize. Cousot and Cousot (COUSOT; COUSOT,

1977) describe ways to ensure that the sequence stabilizes, by parameterizing the sequence

on the operator O, called widening operator. The widening operator determines the least

upper bound operation. The precision and cost of the approximated fixed point is related

to the choice of the widening operator.

The derivation of a static analyzer using abstract interpretation may be summarized

as follows. The program state is classically represented by the domain Σ = I × Store,
where I is the domain of instructions and Store is the domain of stores. The analysis is

derived from a chain of Galois connections linking the semantic domain ℘((I × Store)∗)
to the analysis domain I → Abstore, where Abstore is an abstraction of stores. The

derivation may have the following stages:

1. The set ℘((I × Store)∗), called set of traces, is approximated to trace of sets, rep-

resented by (℘(I × Store))∗, i.e., ℘((I × Store)∗) v (℘(I × Store))∗.

2. The trace of sets is equivalent to (I → ℘(Store))∗. This sequence of mapping of

instructions to set of stores can be approximated to I → ℘(Store).

3. Finally, a Galois connection between ℘(Store) and Abstore completes the analysis.

2.2.1 Examples of concrete and abstract store domains

Consider the store domain given by the powerset of integers 〈℘(Z),⊆〉 and assume

we are interested in the sign of a given integer number. Figure 3 presents some possible

abstractions of ℘(Z) expressing properties on the sign of integers.

The abstraction and concretization functions are clearly shown (e.g., α({0,−1,−2}) =

0−, α({−1, 2}) = Z, while γ(0+) = {z ≥ 0} and γ(0−) = {z < 0}). It is easy to see that

A+, A− and Sign are in Galois connection with ℘(Z).

2.2 Abstract Interpretation 38

Figure 3: Abstractions of ℘(Z).

A non-trivial well known abstraction for the powerset of integers is given by the

abstract domain of intervals represented by 〈Interval,vI〉 (NIELSON; NIELSON; HAN-

KIN, 1999). The elements of the Interval domain are defined by the following:

Interval
def
= {⊥} ∪ {[l, h] | l ≤ h, l ∈ Z ∪ {−∞}, h ∈ Z ∪ {+∞}}

where the standard ordering on integers is extended to Z∪ {+∞,−∞} by setting −∞ ≤
+∞ and that for all z ∈ Z : z ≤ +∞ and −∞ ≤ z. The idea is that the abstract element

[l, h] corresponds to the interval from l to h, including the end points if they are in Z,

while ⊥ denotes the empty interval. Intuitively, an interval int1 is smaller than an interval

int2, represented int1 vI int2, when int1 is contained in int2 . Formally we have:

• for all int ∈ Interval : ⊥ vI int v (−∞,+∞);

• for all l1, l2 ∈ Z∪ {−∞}, h1, h2 ∈ Z∪ {+∞} : [l1, h1] vI [l2, h2]⇔ l2 ≤ l1 ∧ h1 ≤ h2;

Figure 4 represents the abstract domain of intervals. (℘(Z), αI , γI , Interval) is a

Galois insertion where the abstraction αI : ℘(Z) → Interval and concretization γI :

Interval→ ℘(Z) maps are defined as follows:

αI(S) =

⊥ if S = { }
[l, h] if min(S) = l ∧max(S) = h

(−∞, h] if @min(S) ∧max(S) = h

[l,+∞) if min(S) = l ∧ @max(S)

(−∞,+∞) if @min(S) ∧ @max(s)

γI(int) =

{ } if int = ⊥
{z ∈ Z | l ≤ z ≤ h} if int = [l, h]

{z ∈ Z | z ≤ h} if int = (−∞, h]

{z ∈ Z | z ≥ l} if int = [l,+∞)

Z if int = (−∞,+∞)

2.2 Abstract Interpretation 39

Figure 4: The Interval abstract domain.

where l, h ∈ Z, and S ∈ ℘(Z). For example, the set {2, 5, 8} is abstracted in the interval

[2, 8], while the infinite set {z ∈ Z | z ≥ 10} is abstracted in the interval [10,+∞). It

is possible to prove that 〈Interval,vI〉 is a complete lattice with a top element given

by (−∞,+∞), a bottom element given by ⊥, glb uI defined as [l1, h1] uI [l2, h2] =

[max({l1, l2}),min({h1, h2})], and lub tI defined as [l1, h1]tI [l2, h2] = [min({l1, l2}),max
({h1, h2})].

For example, [2, 10] uI [5, 20] = [5, 10] and [2, 10] uI (−∞, 5] = [2, 5], while [2, 10] uI
[20, 25] = ⊥. Thus, the glb of a set of intervals returns the larger interval contained in

all elements of the sets. Also, [2, 10] tI [5, 20] = [2, 20] and [2, 10] tI (−∞, 5] = (−∞, 10],

while [2, 10] tI [20, 25] = [2, 25]. Hence, the lub of a set of intervals returns the smallest

interval that contains all elements of the sets.

The abstract domain of intervals and the abstract domain of sign can be compared

with respect to their degree of precision. In particular, Interval provides a more precise

representation of the powerset of integers than Sign does, meaning Interval v Sign.

2.3 Disassembly 40

2.3 Disassembly

At the heart of static analysis for binaries lies disassembly. Disassembly is the process

of reverse-engineering an executable to recover the set of assembly instructions stored

within the executable image. Many disassemblers also perform additional functions, such

as reconstructing the control-flow graph from the disassembled output. Disassembly,

however, is not an exact science, and there are many different approaches, each with its

own set of trade-offs.

A common and simple disassembly approach, known as linear sweep, requires the

disassembler to start processing from the beginning (of the .text segment) and disassemble

one instruction at a time until the end is reached (SCHWARZ; DEBRAY; ANDREWS,

2002), (VINCIGUERRA et al., 2003). This simplistic method fails when data is embedded

within the code as shown below.

Main:

...

JMP FUNC

DB 0E8h

FUNC:

...

A linear sweep disassembler would simply disassemble the data as if it were code.

If the data happens to match a real assembly instruction, then the disassembler would

continue without a clue about the error. Otherwise, the disassembler may skip over the

byte that is known not to be code and try the next byte. An interesting artifact from

this is that the disassembler tends to eventually get “back on track.” That is, it will begin

disassembling actual instructions correctly at some later point in time (LINN; DEBRAY,

2003). In the meantime, many instructions will be incorrectly disassembled, and the

disassembler will not backtrack to correct the problem.

Another popular disassembly method is known as recursive traversal (LINN; DE-

BRAY, 2003), (SCHWARZ; DEBRAY; ANDREWS, 2002), (VINCIGUERRA et al., 2003).

This method tries to overcome the weaknesses of linear sweep by following the control-flow

of the program when disassembling, instead of disassembling in a straight line from start

to finish. Thus, if the programmer inserts data in the middle of the instruction stream (as

in the above example), the disassembler will jump over the data and will not be fooled.

However, there are other situations that do cause problems. In order to know where to

2.3 Disassembly 41

resume disassembly after a jump, the disassembler must be able to deduce the possible

jump targets statically, which is not always an easy task. Indirect jumps, in particular,

pose a challenge, and if the target of an indirect jump cannot be determined, there is the

possibility of code not being disassembled (that is, the disassembler believes the code is

data).

Another tricky situation arises when one of the jump targets is data. Take, for in-

stance, the code below:

Main:

CMP eax, eax

JE FUNC+1

JMP FUNC

...

FUNC:

DB 0E8h

PUSH 0

CALL ExitProcess

Mentally tracing through the execution of the code reveals that the instruction ‘JE

FUNC + 1’ (jump if equal) always transfers control to ‘FUNC + 1’ because the two

operands being compared (eax and eax) are always equal. Thus, the instruction ‘JMP

FUNC’ is not reachable and will never be executed. This is a good thing too, since there

is no code at ‘FUNC’, only data. This style of trickery is known as an opaque predicate.

Other disassembly methods have been introduced and some variations of the previous

techniques have been proposed. Worth noting is interactive disassembly, which requires a

human to make key decisions to improve the disassembly (VINCIGUERRA et al., 2003).

The disassembler may perform an initial disassembly, and the user may override some of

the decisions made by the disassembler or may instruct the disassembler to disassemble

areas of code that the disassembler misinterpreted for data. Also possible is running the

suspect program in a debugger while allowing the user to guide the disassembly process.

With this sort of dynamic analysis, a more precise disassembly can be achieved, but at

the expense of more human interaction.

2.4 Code Obfuscation 42

2.4 Code Obfuscation

Code obfuscation is a technique for altering the structure of a program’s instruction

set in order to make the meaning less apparent and thus harder for someone to reverse

engineer (LINN; DEBRAY, 2003),(COLLBERG; THOMBORSON, 2002). Obfuscation

has found a purpose in many legitimate applications where it is sometimes used to deter

reverse-engineering by competitors who may be interested in learning proprietary for-

mats (COLLBERG; THOMBORSON; LOW, 1997), (LINN; DEBRAY, 2003). Simple

encryption of the code is not enough, since the code must be decrypted before it can be

executed and would then become vulnerable to reverse engineering. Thus, obfuscation

has proven to be a useful technique to hide important information within code.

On the other hand, like any technology, obfuscation can be used in a more malicious

context. Specifically, malicious code writers frequently turn to code obfuscation to pre-

vent analysis by researchers. Code obfuscation may be particularly effective at deterring

static analysis, since dynamic analysis analyzes behavior and behavior is typically left

unchanged by obfuscators. Taken from (LAKHOTIA; SINGH, 2003), the static analysis

process can generally be broken down into five phases: disassembly, procedure abstrac-

tion, control-flow graph generation, dataflow analysis, and property verification. At the

simplest level, they may attack the disassembler such that it generates incorrect assembly.

On the other extreme, they may introduce spurious control flow paths, rendering static

analysis useless by creating very large approximations. A metamorphic virus, a virus that

transforms its own code as it propagates, may use procedure call obfuscations to enable

its transformation operation. The Win32.Evol virus uses call-obfuscation just for this

purpose. A side-effect of this is that the virus defeats any interprocedural analysis that

depends on a traditional compiler model (LAKHOTIA; SINGH, 2003).

Many obfuscation techniques use what is referred to as opaque predicates. An opaque

predicate is a program variable whose value is known before run-time and is used in such

a way that the obfuscator can predict the flow of control, but an analyst may not (or can

not do so easily) (COLLBERG; THOMBORSON; LOW, 1997). The obfuscator uses the

opaque predicate as an argument to a conditional branch and is then able to decide which

path is chosen based on whether the predicate is true of false. A good opaque predicate

is one that contains a value that is computationally expensive to determine. If an analyst

cannot determine the value of the predicate in a conditional, then the only option is to

assume both paths are possible. Among other things, opaque predicates provide a way to

attack the control-flow graph generation phase of static analysis. By using these contrived

2.4 Code Obfuscation 43

branch statements, one can force an analyzer to add unnecessary edges to the control-flow

graph, thus degrading the results.

Another useful tactic is to insert irrelevant code or data, frequently with the help of

opaque predicates. Take the following piece of code as an example:

if x < 0 then

y = true

else

y = false

It is obvious that, after execution, y may have two possible values, either true or false.

If the variable x, however, is an opaque predicate (it’s value is known before run-time),

then clearly y may have only one value after execution- true if x is less than zero, false

otherwise. Such an attack is aimed at the dataflow analysis phase and can decrease the

precision of the analysis results.

A variation of the above theme is to insert junk data, as shown in the below code. In

this attack, the goal is to trick the disassembler into incorrectly disassembling data as if

it were code. This attack is clearly aimed at the disassembly phase of static analysis.

Main:

CMP eax, eax

JE FUNC+1

JMP FUNC

...

FUNC:

DB 0E8h

PUSH 0

CALL ExitProcess

Another interesting obfuscation technique is to break the common assumptions sur-

rounding branch instructions. In most compiler generated code, a call instruction is paired

with a ret instruction, and the ret instruction transfers control to the instruction follow-

ing the call instruction, but one can choose not to follow this convention. By doing so,

it obscures the flow of execution in a program and is thus an attack on the control-flow

generation phase. It can also, however, cause problems during the disassembly phase for

certain methods of disassembly (recursive-traversal for instance). This obfuscation breaks

2.4 Code Obfuscation 44

down current context-sensitive interprocedural methods, which are based on these con-

ventions. Four types of obfuscation related to call and return statements are identified by

Lakhotia et al. (LAKHOTIA; KUMAR; VENABLE, 2005) below:

1. A call simulated by other means. The semantics of a ‘call addr ’ instruction is as

follows: the address of the instruction after the call instruction is pushed on the stack

and the control is transferred to the address addr, the target of the call. Win32.Evol

achieves the same semantics by a combination of two push and a ret instruction,

where the first push pushes the address of the instruction after the call instruction

(the return address of the procedure call), the second push pushes the addr, and the

ret instruction causes execution to jump to addr. There are other ways to achieve

the equivalent behavior. In Figure 5 an example of an obfuscated call is presented.

In this example, the instruction in line L3 pushes the return address onto the stack,

while the instruction in line L4 jumps to the function entry. Since no call statement

is present, the programs call-graph will not be correct.

Main:

L1: push 4

L2: push 2

L3: push offset L5

L4: jmp Max

L5: ret

Max:

L6: mov eax, [esp+4]

L7: mov ebx, [esp+8]

L8: cmp eax, ebx

L9: jg L11

L10: mov eax, ebx

L11: ret 8

Figure 5: Example of obfuscation of a call instruction.

2. A call instruction may not make a call. The call instruction performs two actions -

pushing a return address on the stack and transfer of control. A program may use

the instruction primarily for control transfer and discard the return address later,

as done by Win32.Evol. The program may also use the instruction as a means to

retrieve the address from memory of a certain point in code, as is done by some

worms.

3. A return may be simulated by other means. A ret instruction is complementary to

2.5 Abstract Stack Graph 45

a call. It pops the return address (typically pushed by a call instruction) from the

stack and transfers control to that address. The same semantics may be achieved

by using other statements. For instance, the return address may be popped into

a register and a jmp instruction may be used to transfer control to the address in

that register. In Figure 6 an example of an obfuscated return is presented. In this

example, the instruction in line L10 pops the return address off the stack, while

the instruction in line L12 jumps to the address in the register ebx. Since no ret

statement is present, the programs call-graph will not be correct. The instruction in

line L11 fixes the stack pointer adding 8 bytes (4 bytes for each passed parameter).

Main:

L1: push 4

L2: push 2

L3: call Max

L4: ret

Max:

L5: mov eax, [esp+4]

L6: mov ebx, [esp+8]

L7: cmp eax, ebx

L8: jg L11

L9: mov eax, ebx

L10: pop ebx

L11: add esp, 8

L12: jmp ebx

Figure 6: Example of obfuscation of a ret instruction.

4. A return instruction may not return back to a call site. A program may utilize the

ret instructions to transfer control to another instruction, completely unrelated to

any call instruction. For instance, the ret instruction can be used to simulate a call

instruction, as outlined earlier.

2.5 Abstract Stack Graph

The concept of ASG is developed by first introducing the notion of abstract stack. An

abstract stack is an abstraction of the real (concrete) program’s stack. While the concrete

stack keeps actual data values that are pushed and popped in a LIFO (Last In First Out)

sequence, the abstract stack stores the addresses of the instructions that push and pop

values in a LIFO sequence. For example, considering Figure 7, each instruction in that

2.5 Abstract Stack Graph 46

program is marked with its address from L1 through L4. The contents of both concrete

and abstract stacks, after execution of the instruction at L4, are shown in Figure 7. In

particular, for the abstract stack, the addresses L1 and L2 are initially pushed onto the

stack, then L2 is popped out by the pop instruction at L3, and L4 is pushed in afterwards.

Figure 7: Concrete and abstract stacks.

E: //entry point

L0: push eax

L1: sub ecx, 1h

L2: beqz L8

L3: push ebx

L4: push ecx

L5: dec ecx

L6: beqz L3

L7: jmp L10

L8: pop ebx

L9: push esi

L10: pop edx

L11: beq L0

L12: call Abc

Figure 8: Sample program.

The example given in Figure 8 illustrates the construction of the abstract stacks. The

control flow graph for that program appears in Figure 9. Each block in the control flow

graph contains either a single push, pop, or call instruction or one of these instructions

plus a control transfer instruction. Figure 10 shows some feasible abstract stacks at four

program points. For example, the third abstract stack at program point 2 is the result of

the following execution trace:

1→ 2→ 3→ 4→ 3→ 4→ 5→ 2

In another example, the abstract stack shown at program point 4 results from the

2.5 Abstract Stack Graph 47

trace:

1→ 2→ 3→ 4→ 3→ 4→ 5→ 2→ 3→ 4

While the execution trace

1→ 2→ 3→ 4→ 5→ 2→ 3→ 4→ 3→ 5→ 2→ 7→ 8

yields the abstract stack at program point 8.

Figure 9: Control flow graph for sample program in Figure 8.

Figure 10: Possible abstract stacks at some program points.

2.5 Abstract Stack Graph 48

Our interest is in finding all possible abstract stacks at each program point for all

execution traces. Since multiple execution traces from the entry node to any program

point may exist, there may be multiple abstract stacks at each program point. This is

enumerated in the example by the multiple traces for program points 2 and 6 in Figure

10. In fact, program points 3 and 4 may have infinite number of abstract stacks because

of loops. This is because there is a loop between program points 3 and 4, and the loop

contains unbalanced push, i.e., a push that is not matched with a pop.

An ASG is a concise representation of all, potentially infinite, abstract stacks at all

points in the program. Figure 11 shows the abstract stack graph for the program in

Figure 8. A path (sequence of nodes beginning from the abstract stack’s top toward its

bottom) in the graph represents a specific abstract stack. In that graph, rectangular boxes

indicate nodes containing instruction addresses, while the edges represent potential traces

that push values onto the stack.

Figure 11: Abstract stack graph for sample program in Figure 8.

Formally, given a set of addresses represented by Addr, an abstract stack graph is a

directed graph represented by the 3-tuple < A,Ae,Aspr >, where:

• A ⊆ Addr is a set of nodes, and an address a ∈ A implies the instruction at address

a performs a push operation.

• Ae ⊆ Addr × Addr is a set of edges. An edge < a,m > ∈ Ae denotes that there is

possible execution trace in which the instruction at address a may push a value on

top of a value pushed by the instruction at address m.

2.6 DOC: Detector of Obfuscated Calls 49

• Aspr ⊆ Addr × Addr captures the set of abstract stack pointers (stack tops) for

each statement. A pair < x, a > ∈ Aspr means that program point x receives the

abstract stack resulting from the value pushed by instruction a at the top.

The last relation is represented in the graph by annotating each node a with the

address x in a circle, such that < x, a > ∈ Ae. This relation may be read as: a is the

stack top at program point x or, alternatively, the stack top a is associated with the

program point x.

The analysis domain is defined by sets of instructions. A given domain I represents the

abstract syntax domain for a given set of instructions. In such domain each instruction

is annotated with its address in the program. Thus, [m : call addr] is the abstract

interpretation of the concrete instruction ‘call addr’ at address m. In the same way, the

domain ASG is the domain of abstract stack graphs. An element of ASG is a 3-tuple

< A,Ae,Asp >, where A and Ae have the same meaning as in the definition of abstract

stack graph. However, the set Asp is a projection of Aspr, where Asp ⊆ Addr is the set

of stack tops.

A path in ASG beginning at some stack top, say t, and ending at the entry point E is

associated with every abstract stack that can occur at the program points associated with

t. A path p in ASG is represented as L1|L2|L3|..|Lj such that < Li→ Li+ 1 > ∈ Ae. A

path p is mapped by a function Ψ to an abstract stack with the last-in element L1 and

the first-in element Lj.

To be concise, in Figure 9 we use the number of each block in the CFG instead of the

address of its instructions. Here, an instruction performing the push operation is always

the first instruction in the block, and a block contains either an instruction that performs

a push operation or an instruction that performs a pop operation, but not both. Thus, in

Figure 9, all points in a block have the same top of stack. For example, in Figure 11, L3

is an abstract node representing the address of the instruction push ebx and is associated

with the set of program points P = {3, 5, 7}. All program points in P receive abstract

stacks with top L3, i.e., the abstract stack pointer asp = L3. Two possible abstract stacks

when traversed from asp = L3 are L3|L0|E and L3|L4|L3|L0|E.

2.6 DOC: Detector of Obfuscated Calls

The Detector of Obfuscated Calls (DOC), proposed by Venable et al. (VENABLE et

al., 2005), (KUMAR; VENABLE, 2007), is a static analysis suite that detects obfuscations

2.6 DOC: Detector of Obfuscated Calls 50

in executable, particularly procedure call and call-return obfuscations. It combines Lakho-

tia and Kumar’s abstract stack graph (ASG) (LAKHOTIA; KUMAR, 2004) with Reps

and Balakrishnan’s value set analysis (VSA) (BALAKRISHNAN; REPS, 2004). It uses

abstract interpretation to find instances in which explicit call or call-return instructions

are not used. Figure 12 shows a screenshot of this tool.

Figure 12: Eclipse interface for DOC.

Embedded within every executable program are tell-tale signs of the program’s intent

located in a table of system calls that are needed by the program. This list of system calls

can be used to determine a program’s behavior prior to executing the program. Consider

a program that makes use of the system calls. It is quite clear that data transfer over a

network will take place if this program is executed. Malicious code writers, being wary

of such transparency in their code, defend their programs’ privacy by obfuscating the

table of required system calls, thus obfuscating the program’s true behavior. A common

approach to this form of obfuscation is known as “call obfuscation.”

2.6 DOC: Detector of Obfuscated Calls 51

In call obfuscation, the detection of used system calls is made difficult by replacing

the existing call and ret instructions with a different, but semantically equivalent, set of

instructions. DOC is capable of statically detecting such code obfuscation by interpreting

the executable and building an abstract representation of the registers and stack, which

allows us to detect pieces of code that violate standard calling conventions. The result is

a more complete listing of system calls used by the program. Using this improved list of

system calls, one is in a better position to accurately gauge a program’s runtime behavior;

a crucial first step in detecting malicious behavior.

DOC consists of four phases: disassembly, parsing, interpretation, and analysis. First,

the binary must be disassembled into assembly instructions. Next, it is parsed by the pro-

gram and translated into a suitable internal representation to be used for the next phase.

Parsing is a relatively simple task requiring that only a grammar describing the input

to be parsed be provided. This grammar can be swapped with other grammar descrip-

tions, opening the possibility to handle other input formats such as disassembled code

from other disassemblers. In the current implementation of DOC, the defined grammar is

for the Ollydbg disassembler/debugger (OLLYDBG, 2009) and is thus susceptible to the

same shortcomings as any recursive-traversal disassembler. DOC shows the feasibility of

using abstract interpretation and abstract stack graph as a means to discover obfuscated

function calls, a task that requires, but is separate from, disassembly.

The interpretation phase consists of computing abstract values where concrete values

ordinarily reside (COUSOT; COUSOT, 1976). The abstract value may over-approximate

the corresponding concrete value, but should never under-approximate it. After interpre-

tation, it should be possible to observe the state at any given instruction and see what

values some particular register or piece of memory may hold. The final phase is the anal-

ysis. The goal of the analysis is to find all call obfuscations hidden in the executable. The

analysis phase has at its disposal the disassembled executable where each instruction is

annotated with the state at that particular instruction. Using the ASG, the algorithm

can uncover any obfuscations. Recall, the abstract stack graph is a data structure that

represents the actual stack by storing abstract values, instead of actual ones. To assist

in discovering obfuscations, each node in the ASG is modified to hold the address of the

instruction that caused the node to be created. Constructing the graph in this way allows

for easy detection of modifications to the return address located on the stack.

Two different types of obfuscations can be detected, obfuscations involving the replace-

ment of a call instruction with some other combination of instructions, and obfuscations

involving the replacement of the return address with a new address.

2.6 DOC: Detector of Obfuscated Calls 52

To detect obfuscations that involve simulating a call instruction with some combina-

tion of other instructions, the ASG at each ret instruction is examined. The instruction

that created the node that is pointed to by register esp is retrieved. Note that this node

is the top of the stack and should hold the return address at this point. Since the current

instruction is a return instruction, the top of the stack should have been created by a

corresponding call instruction (the call instruction pushes the return address onto the

stack). If any other instruction is responsible for placing the return address onto the

stack, then a call obfuscation has been detected. That is, some other tactic was used to

simulate a call instead of using the call instruction directly.

The second type of obfuscation involves removing the return address from the stack

and replacing it with some other value. This type of obfuscation is a useful attack against

most disassemblers, since many of them typically assume that control will transfer back

to the instruction that made the call, and thus will construct an incorrect control-flow

graph.

To detect this type of obfuscation, we look for situations where the return address is

either popped off the stack or some number is added to register esp which results in the

return address being removed from the stack. At each pop instruction, if the instruction

that created the node at the top of the stack (the node to be popped) is a call instruction,

then it is evident that the return address is being removed from the stack. Thus, the pop

instruction is flagged as an obfuscation. A similar approach is used for cases where the

return address is removed by adding some number to esp.

One limitation of the current implementation involves efficiency. Each time an in-

struction is encountered and the state has changed, this instruction must be interpreted

again using the new state. In a large program, there may easily be hundreds of different

paths leading to an instruction, each path containing a new state. Thus, many instruc-

tions may have to be interpreted a large number of times, requiring a level of efficiency

that is not met by the current implementation. Lack of context-sensitive interprocedural

analysis complicates this situation by increasing the number of paths.

Another limitation involving efficiency is the lack of full memory support. The current

implementation provides support for only the register and stack. Having full memory

support will not only help improve the results of call obfuscation detection, but may also

help make the project useful for other applications.

Another limitation worth noting is the lack of support for structured exception han-

dling (SEH). SEH is a programming mechanism useful for detecting serious errors and

2.6 DOC: Detector of Obfuscated Calls 53

transferring control to code designed to handle these errors. Malicious programmers some-

times use SEH as another way to control the flow of execution by intentionally causing an

error to occur (such as a division by zero) and placing the malicious code at the location

intended for code that will handle the error. The interpreter does not implement SEH

and therefore is vulnerable to such attacks. This weakness can result in reachable code

that is never processed by the interpreter.

54

3 Proposed algorithm

This chapter presents our proposed context-sensitive analysis of x86 obfuscated ex-

ecutables. In section 3.1, we illustrate that the Abstract Stack Graph (ASG) intro-

duced by Lakhotia et al. (LAKHOTIA; KUMAR; VENABLE, 2005) can be used to

adapt Sharir and Pnueli’s (SHARIR; PNUELI, 1981) call-string approach in order to

perform context-sensitive interprocedural analysis of programs with non-standard ma-

nipulation of stack, including obfuscation of calls. In section 3.2, we introduce a trace

semantics in which context is made explicit. In section 3.3, generalizations of Sharir

and Pnueli’s (SHARIR; PNUELI, 1981) k-suffix method for abstracting calling-contexts

and Emami et al.’s method of abstracting calling-contexts by reducing recursive cy-

cles (EMAMI; GHIYA; HENDREN, 1994) are presented. In section 3.4, we present our

algorithm for analysis of binaries. It adapts the concept of context-trace to binaries using

stack-contexts and also summarizes the use of Balakrishnan and Reps’ Value-Set Anal-

ysis (BALAKRISHNAN; REPS, 2004),(BALAKRISHNAN, 2007) to determine transfer

of control in assembly programs. Finally, section 3.5 contains examples illustrating the

context-sensitive analysis process.

3.1 Motivation and Intuition

Context-sensitivity is presented classically in the literature in terms of paths of an

Interprocedural Control Flow Graph (ICFG), a graph that encodes the transfer of con-

trol component of semantics of instructions. An ICFG consists of CFGs for individual

procedures. Edges between these CFGs represent interprocedural control flow, typically

expressed by call edges and return edges. A path, starting from the entry node, in an

individual CFG represents a valid sequence of flow of control. A flow-sensitive analysis

propagates data over paths of a CFG. However, a path that starts from the entry of the

program and traverses nodes in multiple CFGs may not always represent a valid flow of

control. For example, propagating information to all the successors at a return instruc-

3.1 Motivation and Intuition 55

tion leads to context-insensitive analysis. Information may flow along a call edge to a

procedure and then be propagated by a return edge to another call site calling that same

procedure. Thus, incorrect combinations of call and return edges create spurious path-

ways for information flow. For such a path to be valid, the call and ret edges in the path

should be paired and should meet certain constraints. In the following, we describe the

most general and simplest method of performing context sensitive interprocedural data

flow analysis.

Sharir and Pnueli’s call-string approach for context-sensitive interprocedural analysis

involves tagging information with an encoded history of calls along which it is propagated.

When information flows along a call-edge, the corresponding call site is added to the

history. The history is then propagated as the tagged information is used to compute

other information. Finally, at the return edge, information is propagated back only to the

call sites in the history, and in turn the last call site is removed from the history.

The context-sensitive flow of information by maintaining call strings comes at a price.

There may be an exponential, if not infinite, number of interprocedurally valid paths,

paths in which the call and return edges are correctly paired. Thus, the amount of

information to be maintained explodes.

The information space is made manageable by capping the history being maintained

up to some k most recent call sites. This ensures context-sensitive flow of information

between the most recent k sites, but context-insensitive flow between call and return sites

that are more than k call sites apart.

A call-graph (CG) is a labeled graph in which each node represents a procedure, each

edge represents a call, and the label on the edge represents a call site. A call string is a

sequence of call-sites (c1c2...cn) such that call site c1 belongs to the entry procedure, and

there exists a path in the call-graph consisting of edges c1, c2, ..., cn. A call string can be

saturated when the encoded history of the procedure calls exceeds the limit k imposed

during analysis. Its representation is given as (∗c1c2...ck), where the parameter k is the

bound of the call string size and represents the set {csk | csk ∈ CSk, cs = πc1c2...ck and

|π| ≥ 1}.

Since the prior definition of context-sensitivity is tied to semantics of procedure call

and return statements of high-level languages, and therefore, call and ret instructions of

assembly language, it is not directly applicable for context-sensitive analysis of binaries

that are obfuscated. In the following, we show how an abstract stack graph (ASG) may

be used in place of a call-graph (CG) for context-sensitive analysis of binaries that are

3.1 Motivation and Intuition 56

obfuscated.

Lemma 3.1.1 Paths in ASG preserve call-strings of CG for programs that do not ma-

nipulate instructions in the stack, except when using the ‘call’ and ‘ret’ instructions.

Proof The nodes of the ASG for such a program will consist of only the call sites. An

edge in the ASG from a call-site Lj to a call-site Li exists iff there is an execution path

from Li to Lj with no other call instruction along the path. Assume that Li is a statement

in procedure Pi, and Lj is in procedure Pj. Assume also that Lj calls procedure Pk. Thus,

in the CG exists an edge from Pi to Pj, with the annotation Li, and an edge from Pj to

Pk with the annotation Lj. This implies that an edge Li to Lj in ASG corresponds to an

edge Pi to Pj with annotation Li, and vice-versa. A call-string will thus correspond to a

path in the ASG.

Therefore, a call-string of Sharir and Pnueli, which is a finite length path in a call-

graph, can be mapped to what we term as a stack context, a finite length path in an

ASG. Formally, a stack context can be defined as a path in the ASG of program locations

(l1l2...ln) such that program location l1 is the first element pushed on the stack, and

there exists a path in the ASG consisting of program locations l1l2...ln such that ln is the

top of the stack. Analogous to Sharir and Pnueli’s saturated call-string we can define a

saturated stack context as a string whose encoded history of the program locations exceeds

some limit k. It is represented as (∗l1l2...lk), where the parameter k is the bound of the

stack-string size and represents the set {ssk | ssk ∈ SSk, ss = πl1l2...lk and |π| ≥ 1}.

Figure 13 shows the ASG and CG for the code of Figure 1(a). The correspondence

between ASG and CG is obvious. The nodes in the ASG represent the edges (call-sites)

in the call-graph. An edge in the ASG represents the next instruction that pushes a value

on the abstract stack along some control flow path. The corresponding called functions

are represented side by side of the call-site.

Now consider programs that use other instructions to manipulate stack, but do not

attempt to obfuscate call and ret.

Corollary 3.1.2 For any program that does not obfuscate ‘call’ and ‘ret’ instructions,

an ASG path containing at least one ‘call’ instruction maps to a unique path in the CG.

Also, a call-string in CG of this program corresponds to one or more ASG paths (that can

be mapped to the CG).

3.1 Motivation and Intuition 57

(a) Abstract stack graph. (b) Call-graph.

Figure 13: Abstract stack graph and call-graph for code of Figure 1(a).

Proof Follows from the previous lemma. If on an ASG path instructions other than the

call instructions are removed, the ASG path will correspond to a call string. The second

part follows by contradiction.

The above discussion implies that the ASG can be used as a substitute for programs

that do not obfuscate call and ret instructions. When performing interprocedural analysis,

values may be tagged with k-length paths in the ASG, instead of the CG. Of course, the

tags would have to take into account the non-call instructions to preserve equivalence in

using call-strings over CG.

The real value, though, comes in the application of ASG for analysis of obfuscated

programs. Since CGs cannot be constructed for obfuscated programs (without deeper

analysis), it is rather difficult to theoretically offer an argument that ASGs are a suitable

replacement for CGs of obfuscated programs. Hence, we will make the case of use of ASG

by example.

Figure 14 shows the ASG for the obfuscated code of Figure 1(c). It is evident that all

paths in the ASG of the non-obfuscated version (Figure 13(a)) can be mapped to paths

in ASG of the obfuscated version. The obfuscated version has extra nodes (represented

by the suffix a) representing push instructions used to push the address of the procedure

being called onto stack.

The similarity of the graphs of Figures 14 and 13(a) suggests that paths in the ASG

may be treated as a replacement for call-string, even for obfuscated programs. Instead

3.1 Motivation and Intuition 58

Figure 14: Abstract stack graph for the obfuscated code of Figure 1(c)

of computing, propagating, and updating call-string over CG, an interprocedural analysis

algorithm may construct, propagate, and update call-strings over ASG. When an ASG

can be computed before the analysis, all possible calling contexts for a statement can

be determined from the top of stacks reaching that point and the ASG (LAKHOTIA;

KUMAR; VENABLE, 2005),(VENABLE et al., 2005). When the computation of ASG

may require performing other analysis, as is likely in obfuscated programs, the two analyses

may be performed in lock-step.

There is just one more optimization step that may be valuable when using an ASG

as a replacement for a CG. Even for non-obfuscated code an ASG may have more nodes

than call sites. Thus, a k length path in the ASG may have fewer call sites than its

corresponding k length call-string. Since the computational resources needed may increase

non-linearly with k, simply increasing k may not be an option. Instead, one may reduce

the number of nodes in the ASG by creating ‘blocks’ of nodes, as is done in control flow

graphs (CFG). A block is a sequence of nodes in an ASG with a single entry and a single

exit. Using ASG made up of blocks of instructions, instead of individual instructions, will

enable propagation of the calling contexts for a larger k.

In the following section, we show using abstract interpretation framework how to

derive contexts using trace semantics and how to adapt for use with stack context prior

work on performing context-sensitive analysis using calling-contexts.

Before preceding to this chapter, the following notations and operators involving

3.2 Context-trace Semantics 59

strings are introduced. Let X∗ denote the Kleene closure of the set X, i.e., the set of finite

sequences over X. We use the symbol ε ∈ X∗ to denote the sequence of length 0 and (x i)

to represent the ith element of the sequence x ∈ X∗. The symbol ‘.’: X ×X∗ → X∗ is the

cons operator, which inserts an element at the head of a sequence. It is defined formally

as: a.x = y ⇔ (y 0) = a ∧ ∀i ≥ 0 : (y i+ 1) = (x i). If 〈X, vX〉 is a lattice, then 〈X∗,
vX∗〉 is a lattice where vX∗ is defined as follows:

∀x1, x2 ∈ X; s, s1, s2 ∈ X∗

ε vX∗ s

x1.s1 vX∗ x2.s2 ⇔ x1 vX x2 ∧ s1 vX∗ s2

The order resulting from vX∗ is called strong ordering, for it defines a sequence to be

smaller than another sequence iff all of its elements are smaller than the corresponding

elements of the other sequence. We introduce some operators on sequences for syntactic

convenience. We assume two polymorphic extensions of the cons operator “.”. One to

insert an element at the end of a sequence: X∗ ×X → X∗, and the other to concatenate

two sequences: X∗ × X∗ → X∗. We also define the function rest operating on X∗ as

follows: (rest a.x) = x. When convenient, we also use the notation “Y ↓X” to denote the

Xth element of the pair Y .

3.2 Context-trace Semantics

In this section we use the machinery of abstract interpretation to develop a generalized

notion of context-sensitive analysis, where contexts are maintained in LIFO order. The

concept is general in that it only requires the knowledge of the set of instructions that

create contexts and those that delete contexts. This generalized concept of context-

sensitivity does not depend on whether an instruction transfers control. The primary

constraint required is that the most recently created context be destroyed first.

Let L ⊆ I denote the set of instructions (of a language) that open contexts, and

M ⊆ I denote the set of instructions that close contexts. A context string is the sequence

of context opening instructions belonging to the L∗ ⊆ I∗. The function π represents the

3.2 Context-trace Semantics 60

effect of an individual state, an element of Σ, on the accumulated context string.

π : Σ→ L∗→ L∗

π s ν ,

{
i.ν if i ∈ L

(rest ν) if i ∈ M

where i = s ↓ 1.

If the instruction in the state given by s ↓ 1 belongs to the set L, it is pushed on the

current context string. If the instruction belongs to M, it pops the topmost context from

the context string. Otherwise, the context string is left unchanged.

Now given a trace σ we can map it to its current context ν = Π σ, where Π is defined

as follows:

Π : Σ∗ → L∗

Π σ , (Π′ σ ε)

Π′ : Σ∗ → L∗→ L∗

Π′ ε ν , ν

Π′ s.σ ν , (Π′ σ (π s ν))

The function Π maps a trace to its context string —the list of contexts that are open—

by applying π repeatedly on successive elements of σ. Let νi represent the context string

from the ith application of π. The function Π (using Π′) establishes the following relation

νi = (π (σ i) νi−1), where ν0 = ε, for 1 ≤ i ≤ |σ|.

Let us assume, for example, context strings created by procedure calls, in which the

opening and closing contexts are given by ci ∈ L and ri ∈ M, respectively. Figure 15 shows

an example of an Interprocedural Control Flow Graph (ICFG) taken from Sharir and

Pnueli (SHARIR; PNUELI, 1981) with the addition of call site c5. An ICFG contains

nodes used in an intraprocedural CFG and two extra nodes for every call site: a call node

(ci) and a return node (ri). An ICFG for a program can be obtained by connecting the

CFGs for individual procedures and adding edges among call, return, start (si) and end

nodes (ei) as follows:

• For every call site calling some procedureX, an edge is added from the corresponding

call node to the start node of procedure X.

• For every procedure X, an edge is added from the end node of X to the return

nodes associated with every call to procedure X.

3.2 Context-trace Semantics 61

Figure 15: Example to demonstrate context string derivation.

Consider, for example, the sequence of instructions from the node n1 to the node n4

resulting from projecting out only the instructions from a trace:

n1 c1 sp n3 c2 sq n5 n6 c3 sp n3 c2 sq n5 eq r2 n4

Extracting open and close contexts in this trace, we obtain the sequence c1 c2 c3 c2 r2. The

context string associated with each prefix of this sequence is given as follows: {(c1) 7→ (c1),

(c1 c2) 7→ (c2 c1), (c1 c2 c3) 7→ (c3 c2 c1), (c1 c2 c3 c2) 7→ (c2 c3 c2 c1), (c1 c2 c3 c2 r2)

7→ (c3 c2 c1)}. Table 3 shows other examples of extracted sequences and their respective

context strings.

A context-trace is a pair of a context string and a trace (ν, σ) ∈ (L∗×Σ∗). Not all

elements of the set (L∗×Σ∗) are meaningful. We define a context-trace in which the

context string represents the context associated with the trace as a Π-valid context-trace.

Definition 3.2.1 A context-trace (ν, σ) ∈ (L∗×Σ∗) is Π-valid iff ν = Π σ.

A Π-valid context-trace is equivalent to a valid-interprocedural path in the ICFG of a

program when the sets L and M represent the set of call and return instructions, respectively,

3.2 Context-trace Semantics 62

Table 3: Examples of sequences of open and close contexts for the program of Figure 15
and their respective context strings.

Trace Context

c1c2 c2c1

c1c2c3c2 c2c3c2c1

c1c2c4c2 c2c4c2c1

c1c2c3c2c4c2 c2c4c2c3c2c1

c1c2c4c2c3c2 c2c3c2c4c2c1

c1c2c4c2c3c2r2 c3c2c4c2c1

c1c2c4c2c3c2r2r3 c2c4c2c1

c1c2c4c2c3c2r2r3c5 c5c2c4c2c1

c1c2c4c2c3c2r2r3c5c3c2r2 c3c5c2c4c2c1

c1c2c4c2c3c2r2r3c5c4c2r2r4c5 c5c5c2c4c2c1

c1c2c4c2r2r4c5r5 c2c1

c1c2c4c2r2r4c5r5r2r1 ε

of that program.

We denote the set of all finite partial Π-valid context-traces as ℘(L∗×Σ∗)Π ≡ L∗ Π−→
℘(Σ∗). This forms the semantic domain for the context-trace semantics. The following

lemma shows that this semantic domain is equivalent to ℘(Σ∗), the semantic domain for

the trace semantics.

Lemma 3.2.2 L∗ Π−→ ℘(Σ∗) ≡ ℘(Σ∗)

Proof Let f : L∗ Π−→ ℘(Σ∗) −→ ℘(Σ∗) and g : ℘(Σ∗) −→ L∗ Π−→ ℘(Σ∗) be functions defined

as follows:

f : L∗ Π−→ ℘(Σ∗) −→ ℘(Σ∗)

f Y =
⋃

ν ∈ dom Y

Y ν

g : ℘(Σ∗) −→ L∗ Π−→ ℘(Σ∗)

g X = λν � {σ | σ ∈ X, ν = Π σ}

where Y : L∗ Π−→ ℘(Σ∗) and X ∈ ℘(Σ∗). We can say that L∗ Π−→ ℘(Σ∗) ≡ ℘(Σ∗) if ∀X ∈
℘(Σ∗) : f(g X) = X and ∀Y ∈ L∗ Π−→ ℘(Σ∗) : g(f Y) = Y .

i) ∀X ∈ ℘(Σ∗) : f(g X) = X.

We have to show that f(g X) ⊂ X and X ⊂ f(g X). The proof is as follows.

3.3 Context Abstractions 63

f(g X) =
⋃

ν ∈ dom(g X)

(g X)ν =
⋃

ν ∈ dom(g X)

{σ | σ ∈ X, ν = Π σ} ⊂ X

It is clear that X ⊂ f(g X) since that σ ∈ X in the union of f(g X).

ii) ∀Y ∈ L∗ Π−→ ℘(Σ∗) : g(f Y) = Y .

We have to show that g(f Y) ⊂ Y and that Y ⊂ g(f Y). The proof is as follows.

g(f Y) = {σ | σ ∈ (f Y), ν = Π σ} = {σ | σ ∈
⋃

ν ∈ dom Y

(Y ν), ν = Π σ} ⊂ (Y ν)

Now, for Y ⊂ g(f Y), we assume ∃ν ∈ Y such that ν /∈ {σ | σ ∈
⋃
ν ∈ dom Y (Y ν), ν =

Π σ}, i.e., ν 6= Π σ which contradicts g definition.

Since the domains of context-trace semantics and trace semantics are equivalent, it

follows that the trace semantics can be mapped to its equivalent context-trace semantics.

This then gives us the framework needed to develop context-sensitive analyses, where

context is made explicit. Most importantly it gives the framework to derive a context-

sensitive counterpart of context insensitive analysis.

Assume that an analysis I → Abstore derived from the trace semantics ℘((I×Store))∗

is context-insensitive. Its context sensitive counterpart may be derived using the following

chain of Galois connections:

L∗ Π−→ ℘((I × Store)∗) v L∗ Π−→ (℘(I × Store))∗

≡ L∗ Π−→ (I → ℘(Store))∗

v LAbs Π−→ I → Abstore

where LAbs is an abstraction of the concrete context L∗. In the following section we describe

two context abstractions generalized from analogous abstractions used for calling-contexts.

3.3 Context Abstractions

Due to recursion and mutual recursion, the set of all finite length calling-contexts in

a program may be infinite. Even when a program does not have recursion, the number

of calling-contexts it has can be exponentially large (LHOTÁK; HENDREN, 2006). So

while a full call-string analysis may yield the most precise results, it may not be practical

3.3 Context Abstractions 64

to compute it. To make the analysis scaleable for large programs, it is common to reduce

the space of calling-contexts by using certain abstractions.

The literature contains two significant classes of abstractions for calling-contexts. The

first one, introduced by Sharir and Pnueli (SHARIR; PNUELI, 1981), abstracts a call

string by mapping it to its k-length suffix. The second abstraction, introduced by Emami

et al. (EMAMI; GHIYA; HENDREN, 1994), effectively abstracts a call string by reducing

recursive paths in it by a single node. We say ‘effectively’ because the method is not stated

as an abstraction over call-strings but can be mapped to such an abstraction. There are

a few later works whose calling-context abstractions may also be mapped to this second

abstraction (WILSON; LAM, 1995),(WHALEY; LAM, 2004),(ZHU; CALMAN, 2004).

What is true of calling-contexts will also be true for any other instantiation of our

generalized notion of context. Hence, it is beneficial to develop generalized context ab-

stractions for use in any context-sensitive analysis. Since the abstractions for calling

contexts have been defined in terms of paths over ICFG, the original definitions cannot

be directly mapped to generalized contexts that are defined independently of control flow.

In the following subsections, we derive the two abstractions using the machinery of

abstract interpretation. We call the generalization of Sharir and Pnueli’s k-suffix approach

as k-context abstraction and Emami et al.’s reduction of recursive loops as `-context ab-

straction. While Sharir and Pnueli used k length suffixes, our abstraction uses k length

prefixes because in our stack the most recent element is inserted at the head of the se-

quence. Mapping from our method to Emami et al.’s is not that straightforward. Emami

et al. define a context as a node in an“invocation graph.” Our `-context strings correspond

to paths in Emami et al.’s invocation graph.

It is apparent that there is not a significant algorithmic challenge in generalizing

the abstractions from calling-contexts to generalized contexts. However, the real issue

in developing the abstraction is in how one would prove that an analysis using that

abstraction will be sound. When used for abstracting calling-context, such arguments are

made by reasoning over paths of an ICFG. Since the generalized context does not have the

benefit of an ICFG, albeit by design, the arguments about soundness must be developed.

Thus, the most significant component of the generalization we perform is the deriva-

tion of Galois connections, and for these are necessary to prove the soundness of any

analysis derived from these context abstractions.

3.3 Context Abstractions 65

3.3.1 k-Context

Let Lk represent the set of sequences of opening contexts of length ≤ k and k+1 length

sequences created by appending > =
⊔

L to k-length sequences of opening contexts. An

element of Lk is called a k-context. We can establish a map αk : L∗→ Lk as:

αk ν ,

ν if |ν| ≤ k

νk.> otherwise, where ν = νk.ν
′ for some ν ′

In other words, when ν is longer than k, αk maps it to νk.>, where νk is the k-length

prefix of ν. A sequence of length ≤ k is mapped to itself. It is shown in the following that

Lk is an abstraction of L∗.

Lemma 3.3.1 αk is surjective and additive.

Proof The surjectivity property follows from the application of αk, since ∀νk ∈ Lk is

formed from a k-length prefix of a ν ∈ L∗. The additivity property is true if: f(a t b) =

f(a) t f(b), where f(x) is the application of αk over a context string ν, and

i) at b results from the consecutive application of the strong ordering operator over every

element in the context strings a and b.

ii) f(a t b) produces a k-context string with the prefix k elements from a t b, preserving

their order.

iii) f(a) and f(b) produces two k-context strings with the prefix k elements from a and

b, respectively, preserving their order.

iv) f(a)t f(b) produces a context string resulting from the consecutive application of the

strong ordering operator over every element in the k-contexts f(a) and f(b).

Since strong ordering operator applied over two elements of a given context string results

either in > if the elements are different or the actual element if it is the same in both

context strings, and αk preserves the order of the context, from (ii) and (iii), it can be

proved that αk is additive.

Thus, L∗ and Lk form a Galois insertion with the abstraction map αk. Context-sensitive

analyses may be derived by defining appropriate context abstraction Lkv LAbs.

In Table 4, the “Context” column provides some examples of contexts. Their corre-

sponding k-context abstractions, with k = 2, are shown in the “2-Context” column.

3.3 Context Abstractions 66

Table 4: Examples of contexts and abstract contexts.
Context 2-Context `-Context
c2c1 c2c1 c2c1

c2c3c2c1 c2c3> c+
2 c1

c2c4c2c1 c2c4> c+
2 c1

c2c4c2c3c2c1 c2c4> c+
2 c1

c2c3c2c4c2c1 c2c3> c+
2 c1

c3c2c4c2c1 c3c2> c3c
+
2 c1

c2c4c2c1 c2c4> c+
2 c1

c5c2c4c2c1 c5c2> c5c
+
2 c1

c3c5c2c4c2c1 c3c5> c3c5c
+
2 c1

c5c5c2c4c2c1 c5c5> c+
5 c

+
2 c1

c2c1 c2c1 c2c1

ε ε ε

3.3.2 `-Context

Let B represent the set {1,+}, where 1 v +. The set L`⊆ (L×B)∗ is defined as:

Definition 3.3.2 L` is the smallest set contained in (L×B)∗ satisfying:

1. ε ∈ L`

2. ∀ν` ∈ L` ; c ∈ L

∀x ∈ B : (c, x) /∈ ν` ⇒ (c, 1).ν` ∈ L` ∧ (c,+).ν` ∈ L`

Assume L= {a, b, c}, the notation x denotes (x, 1), and x+ denotes (x,+). The following

strings are some examples of sequences in L`: ε, a, ab, a+, ab+, a+b+c+. Some examples

of sequences in (L×B)∗, but not in L`, are: aa, abba, a+a+, aba+b+.

The following lemma gives the bound on the size of strings in L`.

Lemma 3.3.3 ∀ν` ∈ L` : |ν`| ≤ |L|.

Proof For any element c ∈ L`, either c or c+ may be in ν`, and each element can occur

only once.

The element a+ represents the set of all contexts that start at the opening context

a followed by a sequence of contexts and then terminating on the opening context a.

Table 4 provides examples of contexts and their corresponding `-contexts. Consider the

3.3 Context Abstractions 67

context “c3c2c4c2c1,” which when read right-to-left gives the order in which the contexts

were pushed. It is abstracted to c3c
+
2 c1. The term c+

2 represents the set of all non-zero

length sequences starting with c2 and ending with c2, and thus represents all cyclic context

strings from c2 to c2. The term c3c
+
2 c1 thus represents the set of contexts consisting of

the opening context c3, pushed on a sequence of openings contexts starting with c2 and

ending with c2 and pushed on the opening context c1.

To develop the abstraction function from L∗ to L` we first develop the abstract syntax

tree (AST) domain LT that is isomorphic to L∗. The abstraction map is then defined on

LT . The following rule defines the syntactic structure of LT in terms of L∗T .

LT= ⊥ ∪ LT×L∗T×L

An element of LT may either be ⊥ or a 3-tuple consisting of (νT , σT , c) where νT ∈ LT ,

σT ∈ L∗T , and c ∈ L. In addition, we also require that the elements of LT further satisfy the

semantic constraint that (t, σT , c) is in LT iff c does not occur again in the subtrees t and

σT , which is formally defined as follows:

∀t ∈ LT ;σT ∈ L∗T ; c ∈ L : (t, σT , c) ∈ LT ⇔ c 6∈T t ∧ c 6∈T ∗ σT

where the two relations ∈T ⊆ L×LT and ∈T ∗ ⊆ L×L∗T are defined as follows:

∀c, d ∈ L;σT ∈ L∗T ; t ∈ LT

c ∈T (t, σT , d)⇔ c ∈T t ∨ c ∈T ∗ σT ∨ d = c

c ∈T ∗ t.σT ⇔ c ∈T t ∨ c ∈T ∗ σT

The function φ maps elements from L∗ to LT . This map amounts to parsing.

φ : L∗→ LT

φ ε , ⊥ (3.1)

φ σ.c , ((φ s1), (map φ [s2, s3, . . . , sn]), c)

where σ = s1.c.s2.c. . . . c.sn for some s1, s2, . . . , sn ∈ L∗ such that ∀ 1 ≤ i ≤ n : c 6∈ si.
The function splits a context string, using its first context c, into a sequence of maximal

substrings s1, . . . , sn such that each of the si does not contain c. The triple (s1, [s2 . . . sn],

c) is used to create the recursive structure, with the function map lifting φ to apply it

point-wise on all elements of a sequence. This construction ensures that the semantic

constraint for LT is preserved. The map from a sequence σ.c ∈ L∗ to the triple (s1,

[s2 . . . sn], c) is bijective. Thus, the domains L∗ and LT are isomorphic. Table 5 provides

3.3 Context Abstractions 68

Table 5: Examples of mapping contexts and T-contexts.
Context T-Context
c2c1 ((⊥, ε, c2), ε, c1)
c2c3c2c1 ((⊥, [(⊥, ε, c3)], c2), ε, c1)
c2c4c2c1 ((⊥, [(⊥, ε, c4)], c2), ε, c1)
c2c4c2c3c2c1 ((⊥, [(⊥, ε, c4), (⊥, ε, c3)], c2), ε, c1)
c2c3c2c4c2c1 ((⊥, [(⊥, ε, c3), (⊥, ε, c4)], c2), ε, c1)
c3c2c4c2c1 (((⊥, ε, c3), [(⊥, ε, c4)], c2), ε, c1)
c2c4c2c1 ((⊥, [(⊥, ε, c4)], c2), ε, c1)
c5c2c4c2c1 (((⊥, ε, c5), [(⊥, ε, c4)], c2), ε, c1)
c3c5c2c4c2c1 ((((⊥, ε, c3), ε, c5), [(⊥, ε, c4)], c2), ε, c1)
c5c5c2c4c2c1 (((⊥, [⊥], c5), [(⊥, ε, c4)], c2), ε, c1)
c2c1 ((⊥, ε, c2), ε, c1)
ε ⊥

examples of contexts and their corresponding “T-contexts”, i.e., the corresponding terms

in LT .

We now define an abstraction map α` : LT→ L` as follows:

∀t ∈ LT ; s ∈ L∗T ; c ∈ L

(α` ⊥) , ε (3.2)

(α` (t, s, c)) , (α` t).c
(αB |s|)

where αB is defined as:

(αB n) ,

1 n = 0

+ n > 0

It follows from the definition that αB is surjective and additive. Hence, αB is an abstraction

from N to B, and N and B form a Galois insertion. To demonstrate that α` is additive we

introduce the relation vT on LT as follows:

∀t, t1, t2 ∈ LT ;∀s1, s2 ∈ L∗T ;∀c1, c2 ∈ L

⊥ vT t,

(t1, s1, c1) vT (t2, s2, c2)⇔ t1 vT t2 ∧ s1 v∗T s2 ∧ c1 v c2

It can be shown that vT is reflexive, anti-symmetric, and transitive, thus defining a partial

order on LT .

Lemma 3.3.4 α` is surjective and additive.

Proof The surjectivity property follows from the application of the definition of α`. The

3.4 Analysis of Obfuscated Assembly Programs 69

additivity property follows from structural induction using the recursive functions defined

for mappings φ (eq. 3.1) and α` (eq. 3.2).

Once again, context-sensitive analyses may be derived by defining L and M, the set of

opening and closing contexts, respectively, and then defining appropriate context abstrac-

tion L`v LAbs.

3.4 Analysis of Obfuscated Assembly Programs

We now turn our attention to context-sensitive analysis of assembly programs in which

the call and ret instructions may be obfsucated. The semantics of the classic call and

ret instructions consist of two parts: manipulation of return address on the stack and

transfer of program control. To obfuscate a procedure call (or return from a call) the two

parts of the semantics of the instructions may be separated and performed using other

instructions. Further, all instructions participating in simulating a call or a return may

not be contiguous in the code; they may be distributed and/or intermixed with other

instructions. On the other hand, call (ret) instructions may be employed for purposes

other than making (returning from) a procedure call. For instance, a call instruction may

be used to transfer control, but the return address may be discarded. Such obfuscation

relating to procedure calls are enumerated in (LAKHOTIA; KUMAR, 2004).

Procedure call and return obfuscations thwart analysis of assembly program by attack-

ing an important step needed for interprocedural analysis: identification of procedures and

creation of a call-graph (LAKHOTIA; SINGH, 2003). Most assembly languages do not

provide any mechanism for encapsulating procedures. Thus, disassemblers use call and ret

instructions to determine procedure boundaries and to create the call-graph (IDAPRO,

2009). When these instructions are obfuscated, the procedures identified and the call-

graph created may be questionable and any subsequent interprocedural analyses circum-

spect.

3.4.1 Programming language

To present our analysis of assembly programs where call and ret instructions are

obfuscated, we first introduce a simple assembly language that does not contain these

instructions. Instead, the language provides primitives that manipulate the stack pointer

and the instruction pointer, both of which are registers in IA32 architecture. Thus, our

3.4 Analysis of Obfuscated Assembly Programs 70

Syntactic Categories:

b ∈ B (boolean expressions)
e, e′ ∈ E (integer expressions)
i ∈ I (instructions)
l, l′ ∈ L ⊆ Z (labels)
z ∈ Z (integers)
p ∈ P (programs)
r ∈ R (references)

Syntax:

e ::= l | z | r | ∗ r | e1 op e2 (op ∈ {+, −, ∗, /, ...})
b ::= true | false | e1 < e2 |¬b | b1 && b2
i ::= l : esp = esp+ e � eip = e′ |

l : esp = e � eip = e′ |
l : ∗esp = e � eip = e′ |
l : r = e � eip = e′ |
l : ∗r = e � eip = e′ |
l : if (b) eip = e; eip = l′

p ::= seq(i)

Figure 16: An x86-like assembly language.

language captures the essential properties needed to present our algorithm for performing

context-sensitive analysis of obfuscated assembly programs.

Figure 16 presents the syntax of the language we use to model our analysis. A program

p in this language consists of a sequence of instructions, viz. seq(i). Instructions can be

either conditional or unconditional. A conditional instruction at a label l has the form

“l : if (b) eip = e; eip = l′”, where b is a boolean expression and e is an integer expression,

which evaluates to the label of the instruction to execute when b evaluates to true; and

l′ is the label of the instruction to execute when b evaluates to false. An unconditional

instruction at a label l has the form of “l : assign � eip = e”, where assign may assign

the result of evaluating an expression to a reference (a register or memory location), or a

memory location pointed to by a reference. The component “eip = e′” of an unconditional

instruction assigns to the instruction pointer eip the label of the command to be executed

next. The notation x � y represents that both arguments x and y are not necessarily

executed in sequence.

Our language assumes a unique symbol esp representing the stack pointer, which may

be a register or a memory location. As noted by the rules in Figure 16 for instruction i,

the operations on (or through) the stack pointer are distinguishable from other operations.

The analysis presented assumes that the stack grows towards lower memory addresses,

3.4 Analysis of Obfuscated Assembly Programs 71

Semantic domains:

δ ∈ ∆ = R + L→ Z (store environment)
s ∈ Σ = I ×∆ (program states)
z ∈ Z (integers)
B = {true, false} (truth values)

Semantic functions:
Fesp : Z→ ∆→ ∆
Fesp z δ = [esp 7→((δ esp) + z)]δ

Freset : Z→ ∆→ ∆
Freset z δ = [esp 7→ z]δ

F∗esp : Z→ ∆→ ∆
F∗esp z δ = [l′ 7→z]δ,

where l′ = δ esp
Fassign : R→ Z→ ∆→ ∆
Fassign r z δ = [r 7→z]δ

F∗assign : R→ Z→ ∆→ ∆
F∗assign r z δ = [l′ 7→ z]δ,

where l′ = δ r

Fexpr : E → ∆→ Z
FexprJlKδ = l
FexprJzKδ = z
FexprJrKδ = δ r
FexprJ∗rKδ = δ l, where l = δ r
FexprJe1 op e2Kδ = FexprJe1Kδ op FexprJe2Kδ

Fbool : B → ∆→ B
FboolJtrueKδ = true
FboolJfalseKδ = false
FboolJe1 < e2Kδ = FexprJe1Kδ < FexprJe2Kδ
FboolJ¬bKδ = ¬FboolJbKδ
FboolJb1 && b2Kδ = FboolJb1Kδ ∧ FboolJb2Kδ

Figure 17: Semantic domains and functions for our semantics.

but it can be changed trivially to accommodate the opposite convention.

Though our language does not explicitly model call, ret, push, or pop instructions,

equivalent behavior may be performed using primitives of our language. For example,

a “call l” instruction may be mapped to the following sequence of instructions in our

language:

l0 : esp = esp− 1 � eip = l1

l1 : ∗esp = l2 � eip = l

where l2 is the address of the instruction after the call instruction. It is not necessary that

these two instructions appear contiguously in code. A “ret” instruction may be mapped

to the following instruction in our language:

l0 : esp = esp+ 1 � eip = ∗esp

Figures 17 and 18 present the semantics for our model language of Figure 16. Figure 17

describes the semantic domains and semantic functions, while Figure 18 presents the

transition relation for our semantics.

A program state is represented by a pair (i, δ) ∈ I×∆, where i is the next instruction

to be executed in the store environment δ. Thus, Σ = I×∆ denotes the set of all possible

3.4 Analysis of Obfuscated Assembly Programs 72

program states. A store environment δ ∈ ∆ is represented by the mapping of disjoint

union of references and labels to integers, denoted by R+L→ Z. The semantic functions

are Fesp, Freset, F∗esp, Fassign, F∗assign, Fexpr and Fbool.

The stack pointer operator Fesp changes the current stack pointer esp by either in-

creasing or decreasing it. It takes as input an integer z and a store environment δ, and

returns an updated store environment, where the stack pointer is modified (increased or

decreased) by z. The reset operator Freset resets the stack pointer, assigning an integer

to the stack pointer esp. It takes as input an integer z and a store environment δ, and

returns an updated store environment, where z is assigned to the stack pointer. The

stack pointer assignment operator F∗esp changes the top value of the stack pointer esp.

It takes as input an integer z and a store environment δ, and returns an updated store

environment, where the value z is assigned to the top value of the stack pointer.

The assignment operator Fassign assigns a value to a reference. It takes as input

a reference r, an integer z and a store environment δ, and returns an updated store

environment that holds z assigned to r. The pointer assignment operator F∗assign assigns

a value to a location. It takes as input a reference r, an integer z and a store environment δ,

and returns an updated store environment that holds z at the specified location pointed by

r. The expression evaluation Fexpr evaluates an integer expression to an integer. It takes

as input an integer expression e and a store environment δ, and returns an integer, which

is the result of evaluation of e in the store environment δ. The boolean evaluation Fbool

performs a boolean evaluation through a combination of logical operators and boolean

comparisons.

Transition relation:

I : Σ→ ℘(Σ)

I(Jl : esp = esp+ e � eip = e′K, δ) = {((Fexpr e′ δ), Fesp (Fexpr e δ) δ)}
I(Jl : esp = e � eip = e′K, δ) = {((Fexpr e′ δ), Freset (Fexpr e δ) δ)}
I(Jl : ∗esp = e � eip = e′K, δ) = {((Fexpr e′ δ), F∗esp (Fexpr e δ) δ)}
I(Jl : r = e � eip = e′K, δ) = {((Fexpr e′ δ), Fassign r (Fexpr e δ) δ)}
I(Jl : ∗r = e � eip = e′K, δ) = {((Fexpr e′ δ), (F∗assign r (Fexpr e δ) δ)}

I(Jl : if (b) eip = e; eip = l′K, δ) =

{
{((Fexpr e δ), δ)} if true = (Fbool b δ)

{(l′, δ)} if false = (Fbool b δ)

Figure 18: Transition relation for our semantics.

The transition relation between program states is defined as I : Σ → ℘(Σ), i.e., the

3.4 Analysis of Obfuscated Assembly Programs 73

transition relation represents the behavior of an instruction i when executed in a certain

store environment δ. Given a program state s ∈ Σ, the semantic function (I s) gives the

set of possible successor states of s.

The transition relation, written for the set of all possible states, may be specialized

for the states of a specific program as follows. Let Σp = p × ∆p be the set of states of

a program p, then the transition relation Ip : Σp → ℘(Σp) on program p is: (Ip i δ) =

{(i′, δ′) | (i′, δ′) ∈ (I i δ), i′ ∈ p, and δ, δ′ ∈ ∆p}.

The concrete trace semantics for a program p is given by the least fixed point of the

following function:

Fp T = Σp
i ∪ {σ.s.s′ | σ.s ∈ T ∧ s′ ∈ Ip s}

where T is a set of finite partial traces; σ is a sequence of program states s0...sn of length

|σ| > 0 such that ∀i ∈ [1, n) : si ∈ (Ip si−1) and s0 ∈ Σp
i , the set of initial states. Following

section 3.2, the concrete context-trace semantics can be obtained by the least fixed point

of Fc : L∗ Π−→ ℘(Σ∗) −→ L∗ Π−→ ℘(Σ∗) which is mapped from F : ℘(Σ∗) −→ ℘(Σ∗).

3.4.2 Stack-context

We now define the sets L′asm and M′asm, which are the sets of instructions that open

and close contexts, respectively, based on operations on the stack pointer. An instruction

opens a context, i.e., belongs in L′asm, if it decrements the stack pointer.

L′asm, {i|∃n ∈ N,∃δ, δ′ : δ′ ∈ (I i δ) ∧ (δ′ esp) = (δ esp)− n}

Analogously, an instruction closes a context, i.e., belongs in M′asm, if it increments the stack

pointer.

M′asm , { i | ∃n ∈ N, ∃δ, δ′ : δ′ ∈ (I i δ) ∧ (δ′ esp) = (δ esp) + n}

Consider the class of programs in which (a) instructions that modify the stack pointer

always increment or decrement it by a statically known constant and (b) that constant is

the same for all instructions. This class includes programs that use only call, ret, push,

and pop instructions to modify the stack pointer. Programs generated by conventional

compilers typically fall in this class. For this class of programs the analysis domain

L′`asm→ Abstore or L′kasm→ Abstore may be used to derive a context-sensitive analysis.

Now consider the programs that meet constraint (a), but not (b). That is, pro-

grams in which the increment/decrement applied to a stack pointer can be statically

3.4 Analysis of Obfuscated Assembly Programs 74

determined, but not all instructions use the same constant. Since the size of space al-

located/deallocated on the stack is not the same, a closing context statement may not

remove the entire context on the top of the stack. The analysis can be trivially extended

for this class of programs by statically introducing pseudo instructions such that all stack

pointer operations use the same constant.

Obfuscated programs, however, may not meet either of the constraints. They may

contain instructions that modify the stack pointer by direct assignment of values, such

as using the instruction l : esp = e � eip = e, or contain instructions that increment or

decrement the stack pointer by an expression whose value cannot be determined statically.

In the absence of any further information about the possible values of the expression, say

from using the Abstore, to derive a safe analysis a worst case assumption would need to

be made.

To analyze the most general class of assembly programs, we need to develop a concrete

context-trace semantics that allows for non-fixed size contexts. The set of opening contexts

for such semantics may be represented by the domain: Lasm ⊆ I × N, meaning that a

context is a pair of a statement and stack units. The set of closing contexts is represented

by the domain Masm ⊆ I × N. The domains are described as follows:

Lasm, {(i, n) | ∃δ, δ′ : δ′ ∈ (I i δ) ∧ (δ′ esp) = (δ esp)− n}

Masm , {(i, n)| ∃δ, δ′ : δ′ ∈ (I i δ) ∧ (δ′ esp) = (δ esp) + n}

A context string is a sequence belonging to L∗asm. A function Πasm : Σ∗ → L∗asm may now

be defined as a function that maps a trace to its context string. This function accounts

for creation and destruction of varying size contexts.

Πasm :Σ∗asm → L∗asm

Πasm σ , (Π′ σ ε)

Π′asm :Σ∗asm → L∗asm→ L∗asm

Π′asm ε ν , ν

Π′asm s1.ε ν , ν

Π′asm s1.s2.σ ν , (Π′asm s2.σ (π (i1, n) ν))

where n = (δ2 esp)− (δ1 esp), s1 = (i1, δ1), δ2 = s2 ↓ 2

3.4 Analysis of Obfuscated Assembly Programs 75

πasm :(I × N)→ L∗asm→ L∗asm

πasm (i, 0) ν , ν

πasm (i, n) ν , (i,−n).ν, where n < 0

πasm (i, n) (j,m).ν ,

{
(j,m− n).ν if m > n

πasm (i, n−m) ν otherwise

where n > 0

The function πasm above is a counter-part of the function π described in section 3.2. It

performs the push and pop operations on context string depending on the value of n. A

negative value of n implies a push operation when the stack grows towards lower memory

addresses. Correspondingly, a positive value of n implies a pop operation.

The domains Lasm and Masm represent the concrete domains. However, since N forms

an infinite lattice, so do these two domains. Besides, the value of n representing the size

of the context, though available in concrete analysis, may not be statically computable.

Hence, we need an abstraction of these domains. We use the formulation used in constant-

propagation to abstract N. Let N represent the flat lattice consisting of the set of numbers

in N and the special values > and ⊥. The lattice is flat in that ∀n, n1, n2 ∈ N : ⊥ vN n,

n vN >, and if n1 6= n2 then n1 t n2 = >. We can now define the abstract context

domains L̂asm = I ×N and M̂asm = I ×N . The `-context abstraction of L̂
∗
asm, denoted by

L̂
`

asm, will be used in the context-sensitive analysis of assembly programs.

Let us compare the difference between the stack context and calling-context of a

non-obfuscated program. It is apparent that the set L̂asm specialized for instructions in

a program p may be larger when using stack context than for calling-context. This is

because when using stack context, a context is created not only for call instructions,

but also for push instructions. What is the implication of these extra nodes on the

computational complexity of the analysis? The complexity depends on two factors. The

total number of context strings created for a program and the number of context strings

reaching a statement. The total number of context strings (which includes all partial

strings) will increase as will the length of the strings. However, the number of context

strings reaching an instruction will be the same for both methods. This is because when

using stack context the push instructions will simply increase the length of the context

strings passing through them, but not increase the number of the context strings. Thus,

for an appropriate representation of context strings, such as using BDD (WHALEY; LAM,

2004),(ZHU; CALMAN, 2004), the complexity of the algorithm will remain unchanged.

3.4 Analysis of Obfuscated Assembly Programs 76

3.4.3 Modeling transfer of control

To complete the analysis of programs in the model assembly language we still need

to develop abstraction for modeling the transfer of control. In the concrete semantics,

the register eip represents the instruction pointer. Upon execution of each instruction the

eip is updated with the label (a numerical value) of the next instruction to be executed.

The value of the label may be computed from an expression involving values of registers

and memory locations. Thus, to model transfer of control we need an abstraction of the

values computed by an expression.

We use Balakrishnan and Reps’ Value-Set Analysis (V SA) (BALAKRISHNAN; REPS,

2004),(BALAKRISHNAN, 2007) to recover information about the contents of memory

locations and registers manipulated by an assembly program. VSA uses the domain

RIC = N × Z × Z to abstract ℘(Z). A Reduced Interval Congruence (RIC) is a hybrid

domain that merges the notion of interval with that of congruence. Since an interval

captures the notion of upper and lower bound (COUSOT; COUSOT, 1976) and a con-

gruence captures the notion of stride information, one can use RIC’s to combine both

worlds. An RIC is a formal, well-defined, and well-structured way of representing a finite

set of integers that are equally apart. For example, say we need to over-approximate the

set of integers {1, 3, 5, 9}. An interval over-approximation of this set would be [1, 9] which

contains the integers 1, 2, 3, 4, 5, 6, 7, 8, and 9; a congruence representation would note that

1, 3, 5, and 9 are odd numbers and over-approximate {1, 3, 5, 9} with the set of all odd

numbers 1, 3, 5, 7, Both of these approximations are too conservative to achieve a tight

approximation of such a small set. The set of odd numbers is infinite and the interval does

not capture the stride information and hence loses some precision. In the above example,

the RIC 2[1, 9], which represents the set of integer values {1, 3, 5, 7, 9}, clearly is a tighter

over-approximation of our set. Formally written, a value s[lb, ub] ∈ RIC, where s ∈ N
and lb, ub ∈ Z are mapped to ℘(Z) by the following concretization map:

γ(s[lb, ub]) = {z|lb ≤ z ≤ ub, z ≡ lb (mod s)}.

Thus, γ(2[1, 9]) = {1, 3, 5, 7, 9}.

Since memory addresses are numerical values, the domain RIC provides a safe ap-

proximation of the set of numerical values as well as addresses held by a register or a

memory location. Whether the values represented by an element s[lb, ub] are memory

addresses or numerical values follows from how the information is used in an instruction.

When the value is assigned to eip it is treated as a memory address, in particular, a

label of an instruction. Similarly, the value represents a memory address when used in an

3.4 Analysis of Obfuscated Assembly Programs 77

indirect memory operand, such as when computing the expression ∗ r.

3.4.4 Semantic domain and algorithm

We now discuss the derivation of semantic domain and algorithm for the context

sensitive version of Venable’s et al.’s algorithm. Venable et al.’s algorithm (VENABLE et

al., 2005) is a static analyzer that can track stack manipulations where the stack pointer

may be saved and restored in memory or registers. It combines Lakhotia and Kumar’s

abstract stack graph (ASG) (LAKHOTIA; KUMAR, 2004) with Reps and Balakrishnan’s

value-set analysis (VSA) (BALAKRISHNAN; REPS, 2004).

The ASG domain was introduced by (LAKHOTIA; KUMAR, 2004) as an abstraction

of the set ℘(L∗asm). Each element of ℘(L∗asm) represents a set of (partial) stack strings.

To create a finite representation of a possibly infinite set of such strings, Lakhotia et

al. abstracted ℘(L∗asm) using the domain ASG = ℘(L̂asm) × ℘(L̂asm × L̂asm). The relevant

abstraction/concretization maps to show that ℘(L∗asm) v ℘(L̂asm) × ℘(L̂asm × L̂asm) may

be derived from the following insight. The first component of the ASG domain, ℘(L̂asm),

represents the set of stack tops. Starting from a node in the set of stack tops, a path in

the graph representing the second component, ℘(L̂asm× L̂asm), gives a partial stack string.

Venable et al. combined ASG and VSA methods to derive the context-insensitive

analysis I → R + L → ASG × RIC. We derive a context-sensitive equivalent of this

analysis using the domain L̂
`

asm → I → R + L → RIC. This domain does not include a

mapping from an instruction to its ASG because the abstraction of the stack is implicitly

available in a context-sensitive analysis. The analyzer may be derived using the chain

of Galois connections. To ensure termination of the analyzer, we use the widening op-

erator for RIC domain as given by (BALAKRISHNAN, 2007) to accelerate fixed point

computation.

The pseudo-code for the top-level procedure and its fluxogram are shown in Figures 19

and 20, respectively. Procedure ContextSensitive-` interprets a disassembled input pro-

gram and returns the same program with state information ‘δ# ∈ ∆# = R + L → RIC’

attached to each instruction. This procedure initializes all values of memory location

R+L and the work-list. Procedure I# interprets the given instruction ‘i’ using the given

state ‘δ#’, while procedures push-` and pop-` manipulate the context strings ‘ν` ∈ L`asm’

during the context-sensitive analysis. In the case of the push instruction, we have ‘i in

Lasm’ and we have ‘i in Masm’ in the case of pop instruction. The value ‘next’ represents

the transfer of control during the interpretation, which is acquired from register eip. The

3.4 Analysis of Obfuscated Assembly Programs 78

analysis ends when the work-list is null.

decl worklist : Set of (L`asm×I × L×∆#)
decl next : Set of L

proc ContextSensitive-`()
δ#′ := Initial values of memory locations
l′ := δ#′(eip) // next address to be interpreted
i′ := getInstruction(l′)
worklist := (ε, i′, l′, δ#′)
while (worklist <> ∅) do

Select and remove (ν`, i, l, δ
#) from worklist

δ#′ := I#(i, δ#)
next := δ#′(eip)
for l in next do

if i in Lasm then
push-`(ν`, i, l, δ

#′) // Function to manipulate push in the stack
else if i in Masm then

pop-`(ν`, i, l, δ
#′) // Function to manipulate pop in the stack

else
i := getInstruction(l)
put (ν`, i, l, δ

#′) in worklist
endif

end for
end while

end proc

Figure 19: Pseudo-code for the top-level procedure of our algorithm.

A version of this algorithm for k-context analysis can be achieved by replacing the

calls for push-` and pop-` by calls to push-k and pop-k. These functions are modified

versions of the former ones where a k length is applied to the string.

The pseudo-code for the I# procedure is shown in Figure 21, and the semantic func-

tions are shown in Figure 22. Each instruction described in Figure 16 is evaluated sepa-

rately. For matching purposes, we use function notation to describe the interpretation of

each instruction in our abstracted semantics. This notation can be related to the notation

used to describe our concrete semantics. The main differences for the abstract and con-

crete semantics are described next. In the abstract semantics, the functions denoted by

a superscript # may result in more than one address, while in the concrete semantics we

just have one address. Moreover, the abstract semantic functions contain an extra label

in its signature, which represents an abstraction of the real address needed to represent

context strings and the abstract stack graph. Another difference is related to conditional

instructions, in which the abstract semantics result in a union of the paths since our

3.4 Analysis of Obfuscated Assembly Programs 79

Figure 20: Fluxogram for the top-level procedure of our algorithm.

interpreter does not consider carry flags.

The pseudo-code for the push-` procedure is shown in Figure 23. This procedure

represents a push operation on the context string. The address of the push instruction is

prepended in the context string if the address is not in the context string or the context

string is abstracted by the cycle of the push instruction address.

Figure 24 shows the pseudo-code for the pop-` procedure, and the pseudo-code for the

recursivePaths procedure. The pop-` procedure represents a pop operation on the context

string. In the case of no recursion, the first address is popped from the context string.

In the recursive case, the recursivePaths procedure traverses the ASG to find all possible

context strings which may result in the current context string. Basically, this procedure

finds all possible recursive cycle paths in the ASG starting with the opening context l′ on

the top of the context string to all successors of l′.

3.4 Analysis of Obfuscated Assembly Programs 80

proc I#(i, δ#)
switch i

case Jl : esp = esp+ e � eip = e′K
(F#

expr e
′ δ#)× {F#

esp l (F#
expr e δ

#) δ#}
case Jl : esp = e � eip = e′K

(F#
expr e

′ δ#)× {F#
reset l (F#

expr e δ
#) δ#}

case Jl : ∗esp = e � eip = e′K
(F#

expr e
′ δ#)× {F#

∗esp l (F#
expr e δ

#) δ#}
case Jl : r = e � eip = e′K

(F#
expr e

′ δ#)× {F#
assign l r (F#

expr e δ
#) δ#}

case Jl : ∗r = e � eip = e′K
(F#

expr e
′ δ#)× {F#

∗assign l r (F#
expr e δ

#) δ#}
case Jl : if (b) eip = e; eip = l′K

((F#
expr e δ

#)× δ#) ∪ {(l′, δ#)}
end switch

end proc

Figure 21: I# procedure of our algorithm.

3.4.5 Soundness

The concrete context-trace semantics is given by the least fixed point of the function

Fc : L∗asm
Πasm−−−→ ℘(Σ∗) −→ L∗asm

Πasm−−−→ ℘(Σ∗), where Σ = I ×R+ L→ Z. The context-trace

semantics of the context-sensitive analyzer is given by the least fixed point of the function

F# : (L̂
`

asm → I → R + L→ RIC) −→ (L̂
`

asm → I → R + L→ RIC).

Lemma 3.4.1 L∗asm
Πasm−−−→ ℘(Σ∗) v L̂

`

asm → I → R + L→ RIC.

Proof It follows from Lemma 3.3.4 that L∗asmv L̂
`

asm, and it follows from Balakrishnan

and Reps’ (BALAKRISHNAN, 2007) that ℘(Z) v RIC. Then, it follows by monotone

and total function space combination techniques of Galois connections that

L∗asm
Πasm−−−→ ℘((Σ)∗) v L∗asm→ (℘(Σ))∗

≡ L∗asm→ (I → R + L→ ℘(Z))∗

v L∗asm→ I → R + L→ ℘(Z)

v L̂
`

asm → I → R + L→ RIC.

It follows from lemma 3.4.1 and the fixed point transfer theorem that F# is a sound

approximation of Fc. However, F# may not be complete w.r.t Fc.

3.4 Analysis of Obfuscated Assembly Programs 81

δ# ∈ ∆# = R + L→ RIC
ric ∈ RIC

F#
esp : L→ RIC → ∆# → ∆#

F#
esp l ric δ

= if ric = {x} ∧ x ≤ 0 Addnode l x δ#

else if ric = {x} ∧ x > 0 Succnode x δ#

else F#
reset l ric δ

#

F#
∗esp : L→ RIC → ∆# → ∆#

F#
∗esp l ric δ

= [l′ 7→ric]δ#, where l′ ∈ δ# esp

F#
assign : L→ R→ RIC → ∆# → ∆#

F#
assign l r ric δ

= [r 7→ric]δ#

F#
∗assign : L→ R→ RIC → ∆# → ∆#

F#
∗assign l r ric δ

= [l′ 7→ric]δ#, where l′ ∈ δ# r
F#
expr : E → ∆# → RIC
F#
exprJlKδ# = l[1, 1]
F#
exprJzKδ# = z[1, 1]
F#
exprJrKδ# = δ# r
F#
exprJ∗rKδ# = t{δ# l | l ∈ δ# r}
F#
exprJe1 op e2Kδ# = F#

exprJe1Kδ# op F#
exprJe2Kδ#

F#
bool : B → ∆# → ℘(B)

F#
boolJtrueKδ

= true

F#
boolJfalseKδ

= false

F#
boolJe1 < e2Kδ# = F#

exprJe1Kδ# < F#
exprJe2Kδ#

F#
boolJ¬bKδ# = ¬F#

boolJbKδ
#

F#
boolJb1 && b2Kδ# = F#

boolJb1Kδ# ∧ F#
boolJb2Kδ#

F#
reset : L→ RIC → ∆# → ∆#

F#
reset l ric δ

= [esp 7→ ⊥]δ#

Addnode : L→ Z→ ∆# → ∆#

Addnode l z δ# = if (z < 0) Addnode (l (z + 1) [esp 7→ lz]δ#),where lz /∈ δ#

else δ#

Succnode : Z→ ∆# → ∆#

Succnode z δ# = if (z > 0) Succnode ((z − 1) [esp 7→ t succ(δ# esp)]δ#)
else δ#

Figure 22: Abstracted semantic functions.

3.5 Examples 82

proc push-`(ν` : L`asm, i : I, l : L, δ# : ∆#)
let l′ = (i, x); i′ = getInstruction(l) // x can be + or 1
in if l′ not in ν` then

// not recursive
put ((i, 1).ν`, i

′, l, δ#) in worklist
else
// recursive case

let ν` = ν ′`.l
′.ν ′′`

put ((i,+).ν ′′` , i
′, l, δ#) in worklist

endif
end proc

Figure 23: push-` procedure of our algorithm.

3.5 Examples

This section explains the context-sensitive analysis process of obfuscated code us-

ing stack-contexts. Figure 25 contains an assembly obfuscated program with two stack-

contexts. The program consists of two functions: Main and Max. The function Max

takes as input two numbers and returns as output the larger of the two numbers. The

function Main pushes the two arguments onto the stack before calling Max, but instead

of calling Max directly, it uses two push instructions and a ret instruction to achieve the

same behavior. This obfuscation technique can effectively hide the boundary between

the two procedures and result in a less accurate ICFG. Analysis methods relying on the

interprocedural control flow graph may, in effect, produce less accurate results as well.

Our analysis is independent of the ICFG and is described next. After careful inspec-

tion, one may observe that in order to perform context-sensitive analysis of the code in

Figure 25, we have to match the node L18 (end node of procedure Max) with nodes L6

and L11 (return nodes). Our analysis can correctly perform these matches. Table 6 pro-

vides the results for our context-sensitive analysis for this obfuscated code. It provides

the in and out for each node. For simplicity, the results only contain valued memory loca-

tions. For example, in the line ‘L1 In’,< ε | eip = l1 > represents that the empty context

ε contains eip = l1 (entry point) and that all other memory locations are indetermined.

The following (incomplete) steps illustrate the context-sensitive interprocedural analysis

process:

• Upon entry, we have ‘L1 In’ < ε | eip = l1 >. Instruction at L1 pushes a value onto

the stack, consequently changing the stack-context to l1. The result is represented

3.5 Examples 83

decl visited : Set of L
proc pop-`(ν` : L`asm, i : I, l : L, δ# : ∆#)

let l′ = (i′, x) = top(ν`),
ν ′` = rest(ν`),
i′′ = getInstruction(l)

in if (x = 1) then
put (ν ′`, i

′′, l, δ#) in worklist
else // recursive node on top

for (l′, succ) in ASG do
visited := ∅
paths := recursivePaths(succ, l′)
for p in paths do

put (p.(i′, 1).ν ′`, i
′′, l, δ#) in worklist

put (p.(i′,+).ν ′`, i
′′, l, δ#) in worklist

end for
end for

endif
end proc

proc recursivePaths(start : L, end : L) : Set of paths
paths := ∅
if start not in visited then

put start in visited
if (start <> end)

for (start, start′) in ASG do
paths := recursivePaths(start′, end)
for p in paths do

put(start.p) in paths
end for

end for
end if

end if
return paths

end proc

Figure 24: pop-` procedure of our algorithm.

3.5 Examples 84

Figure 25: Obfuscated call using push/ret instructions.

by ‘L1 Out < l1 | l1 = 4, esp = l1, eip = l2 >’. Instructions at L2, L3 and L4 perform

in a manner similar to L1, consequently at ‘L4 Out’ we have < l4l3l2l1 | l1 = 4, l2 =

2, l3 = l6, l4 = l13, esp = l4, eip = l5 >.

• The ret instruction at L5 pops the address L13 from esp = l4, changes the context

to l3l2l1, and transfers the control of execution to L13. Instructions from L13 to L17

have no effect on the context. Instruction L16 is a conditional jump and does not

change the values. During evaluation, each possible target will be processed, and

each resulting state is joined once the two execution paths meet. That is represented

by the set eip = {l17, l18} at line ‘L16 Out’. Instruction at L17 copies the value from

ebx to eax. Instruction L18 pops the address L6 from esp = l6, changes the context

to ε, and transfers the control of execution to L6. However, since L18 can be reached

from L16 and L17, the results of evaluating the two paths must be joined before

processing L18. At line ‘L16 Out’, eax = 2, whereas at line ‘L17 Out’, eax = 4.

The union of the two is the set {2, 4}, or the RIC 2[1,2].

• Instruction at L6 pushes a value onto the stack and changes the context to l6.

Instructions at L7, L8 and L9 perform in a manner similar to L6. Thus, at ‘L9 Out’

we have < l9l8l7l6 | l6 = 6, l7 = 4, l8 = l11, l9 = l13, esp = l9, eax = 2[1, 2], ebx =

4, eip = l10 >. The ret instruction at L10 pops the address L13 from esp = l9,

changes the context to l8l7l6, and transfers the control of execution to L13. At this

point, the analysis contains two contexts: l3l2l1 and l8l7l6. The evaluation from L13

to L18 now proceeds in the context l8l7l6. Instruction at L18 pops and transfers

the control of execution to L11 (return address off the top of the stack in the stack-

context l8l7l6). It also changes the stack-context to ε. Evaluation continues at L11,

3.5 Examples 85

Table 6: Stack contexts and associated values for interprocedural analysis of obfuscated
binaries.

Nodes Context and associated values
L1 In < ε | eip = l1 >
L1 Out < l1 | l1 = 4, esp = l1, eip = l2 >

L2 In < l1 | l1 = 4, esp = l1, eip = l2 >
L2 Out < l2l1 | l1 = 4, l2 = 2, esp = l2, eip = l3 >

L3 In < l2l1 | l1 = 4, l2 = 2, esp = l2, eip = l3 >
L3 Out < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eip = l4 >

L4 In < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eip = l4 >
L4 Out < l4l3l2l1 | l1 = 4, l2 = 2, l3 = l6, l4 = l13, esp = l4, eip = l5 >

L5 In < l4l3l2l1 | l1 = 4, l2 = 2, l3 = l6, l4 = l13, esp = l4, eip = l5 >
L5 Out < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eip = l13 >

L6 In < ε | eax = 2[1, 2], ebx = 4, eip = l6 >
L6 Out < l6 | l6 = 6, esp = l6, eax = 2[1, 2], ebx = 4, eip = l7 >

L7 In < l6 | l6 = 6, esp = l6, eax = 2[1, 2], ebx = 4, eip = l7 >
L7 Out < l7l6 | l6 = 6, l7 = 4, esp = l7, eax = 2[1, 2], ebx = 4, eip = l8 >

L8 In < l7l6 | l6 = 6, l7 = 4, esp = l7, eax = 2[1, 2], ebx = 4, eip = l8 >
L8 Out < l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 2[1, 2], ebx = 4, eip = l9 >

L9 In < l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 2[1, 2], ebx = 4, eip = l9 >
L9 Out < l9l8l7l6 | l6 = 6, l7 = 4, l8 = l11, l9 = l13, esp = l9, eax = 2[1, 2], ebx = 4, eip = l10 >

L10 In < l9l8l7l6 | l6 = 6, l7 = 4, l8 = l11, l9 = l13, esp = l9, eax = 2[1, 2], ebx = 4, eip = l10 >
L10 Out < l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 2[1, 2], ebx = 4, eip = l13 >

L11 In < ε | eax = 2[2, 3], ebx = 6, eip = l11 >
L11 Out < l11 | l11 = 0, esp = l11, eax = 2[2, 3], ebx = 6, eip = l12 >

L12 In < l11 | l11 = 0, esp = l11, eax = 2[2, 3], ebx = 6, eip = l12 >
L12 Out < l12l11 | l11 = 0, l12 = ExitProc, esp = l12, eax = 2[2, 3], ebx = 6, eip = ExitProc >

L13 In < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eip = l13 >
< l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 2[1, 2], ebx = 4, eip = l13 >

L13 Out < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eax = 2, eip = l14 >
< l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 4, ebx = 4, eip = l14 >

L14 In < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eax = 2, eip = l14 >
< l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 4, ebx = 4, eip = l14 >

L14 Out < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eax = 2, ebx = 4, eip = l15 >
< l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 4, ebx = 6, eip = l15 >

L15 In < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eax = 2, ebx = 4, eip = l15 >
< l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 4, ebx = 6, eip = l15 >

L15 Out < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eax = 2, ebx = 4, eip = l16 >
< l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 4, ebx = 6, eip = l16 >

L16 In < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eax = 2, ebx = 4, eip = l16 >
< l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 4, ebx = 6, eip = l16 >

L16 Out < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eax = 2, ebx = 4, eip = {l17, l18} >
< l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 4, ebx = 6, eip = {l17, l18} >

L17 In < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eax = 2, ebx = 4, eip = l17 >
< l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 4, ebx = 6, eip = l17 >

L17 Out < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eax = 4, ebx = 4, eip = l18 >
< l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 6, ebx = 6, eip = l18 >

L18 In < l3l2l1 | l1 = 4, l2 = 2, l3 = l6, esp = l3, eax = 2[1, 2], ebx = 4, eip = l18 >
< l8l7l6 | l6 = 6, l7 = 4, l8 = l11, esp = l8, eax = 2[2, 3], ebx = 6, eip = l18 >

L18 Out < ε | eax = 2[1, 2], ebx = 4, eip = l6 >
< ε | eax = 2[2, 3], ebx = 6, eip = l11 >

3.5 Examples 86

which proceeds to the end of the program.

This example shows how our proposed algorithm provides context-sensitivity in the

analysis of obfuscated code, in which pieces of code are analyzed separately for different

data flow values at different stack-contexts.

Figure 26 shows the same code, but using the push/jmp obfuscation. The function

Main, instead of calling Max directly, pushes the return address onto the stack and jumps

to Max. Analysis methods that rely on the correctness of an ICFG will surely fail when

analyzing such code.

Figure 26: Obfuscated call using push/jmp instructions.

Upon entry, the stack-context is ε. Instruction at L1 pushes a value onto the stack,

consequently changing the stack-context to l1. Instructions at L2 and L3 perform in

a manner similar to L1. After interpretation of instruction at L3, the stack-context is

l3 − l2 − l1. Instruction at L4 transfers the control to L11 (entry point of function Max),

and the stack-context is left unchanged.

The next instruction evaluated is the target of the jump, or L11 in this case. Instruc-

tions from the nodes L11 to L15 have no effect on the stack-context. Instruction L16

implicitly pops and transfers the control of execution to L5, which is the return address

off the top of the stack in the stack-context l3 − l2 − l1. Instruction at L16 also changes

the stack-context l3 − l2 − l1 to ε, i.e., it pops the return address and adds 8 bytes in the

register esp.

Instruction at L5 pushes a value onto the stack, consequently changing the stack-

context to l5. Instructions at L6 and L7 perform in a manner similar to L5. After

interpretation of instruction at L7, the stack-context is l7 − l6 − l5. Similarly to the

instruction at L4, instruction at L8 transfers the control to the function Max, and the

3.6 Discussion 87

context is left unchanged. As before, instructions from the nodes L11 to L15 have no

effect on the stack-context. Instruction at L16 implicitly pops and transfers the control of

execution to L9, which is the return address off the top of the stack in the stack-context

l7− l6− l5. Instruction at L16 also changes the stack-context l7− l6− l5 to ε, i.e., it pops

the return address and adds 8 bytes in the register esp. Evaluation continues at L9, which

proceeds to the end of the program.

In Figure 27, the function Max is invoked in the standard way, however it does not

return in the typical manner. Instead of calling ret, the function pops the return address

from the stack and jumps to that address (nodes L14 to L16). The stack pointer is

adjusted using the add instruction at node L15.

Following the previous examples, at instruction L14, our analysis has two stack-

contexts: l3 − l2 − l1 and l6 − l5 − l4. The pop instruction at L14 pops the address

L4 in the context l3 − l2 − l1 and L7 in the context l6 − l5 − l4, consequently, changing

the contexts to l2 − l1 and l5 − l4, respectively. The add instruction at L15 adds eight

bytes to esp, then alters the context strings to ε. Instruction at L16 jumps indirectly to

the address L4 or L7 depending on the address popped.

Figure 27: Obfuscated return using pop/jmp instructions.

3.6 Discussion

We have presented a method for performing context-sensitive analysis for binaries

in which calling-contexts cannot be discerned as in obfuscated binaries. Our method of

context-sensitive analysis does not rely on finding procedure boundaries and determining

procedure calls. Instead, it defines a context based on the state of the stack. We adapt

prior work on context-sensitive interprocedural analysis using call-strings to use with the

stack context. The notion of call-strings has in the past been described in terms of valid

3.6 Discussion 88

paths of an ICFG (SHARIR; PNUELI, 1981). We generalize the concept using abstract

interpretation and define contexts using trace semantics.

The method presented enables context-sensitive analysis of obfuscated programs that

cannot be analyzed by current methods, and hence improves upon the state-of-the-art.

Yet, its performance on non-obfuscated programs is equally important. Treating any push

on the stack to create a new context increases the number of nodes in a context-graph, a

graph that contains the call-graph. Since the number of call-strings in a program grows

exponentially, it is reasonable to ask whether adding more nodes in the call-graph will

make matters worse. The addition of nodes for push instruction in the graph does not

change the number of paths between any two call sites. Thus, although the context strings

may be longer, the number of context strings at an instruction does not change with the

addition of the new nodes. Alternatively, if the context-graph is constructed a priori,

sequences of single-entry, single-exit nodes may be collapsed into single nodes (like blocks

of a CFG).

In the next chapter, we present the empirical evaluation of the context sensitive and

insensitive versions of Venable’s algorithm.

89

4 Empirical evaluation

In this chapter, we present the results and insights of an empirical evaluation of

context-sensitive analysis of obfuscated programs. Our evaluation is divided into two

phases: 1) comparison of the two context abstractions `- and k-context and 2) study of

improvement in analysis of obfuscated code resulting from using context-sensitive version

of Venable et al.’s analysis (VENABLE et al., 2005) against its context-insensitive version.

To perform the evaluation we implemented four versions of Venable et al.’s (VEN-

ABLE et al., 2005) method, combining the two context abstractions (` and k) with the

two methods for determining contexts (calling-contexts and stack-contexts). The im-

plementation, done on the Java Eclipse workbench, analyzes disassembled binary code.

Eclipse is an extensible development environment with a rich set of tools to aid in de-

velopment (ECLIPSE, 2009). Programs developed on Eclipse are written as plugins to

the Eclipse platform and can take advantage of the robust Eclipse framework to decrease

development time. Both analyses were implemented to share most of the code and differ

only on the context operations. Thus, there is a high likelihood that the differences in

precision and performance observed may be attributed to the analyses, and not as a side-

effect of the implementation decisions. All evaluations were performed on an Intel Core2

Duo 2Ghz/3GB Dell Workstation.

Our empirical evaluation shows that as expected a context-sensitive analysis produces

more precise results than its context-insensitive counterpart. Quite unexpectedly our

evaluation also shows that for certain call structures the context-sensitive analysis is more

efficient.

4.1 Comparison of `- and k- Context Analyses

We now present a comparison of the performance of Emami et al.’s `-context abstrac-

tion of call strings (EMAMI; GHIYA; HENDREN, 1994) against Sharir and Pnueli’s k-

context abstraction of call strings (SHARIR; PNUELI, 1981). We use the classic method

4.1 Comparison of `- and k- Context Analyses 90

of terminating the analysis when the context reaches k bound, rather than the recent

improvements (KHEDKER; KARKARE, 2008) where the call-string construction is ter-

minated using the data flow values.

The evaluation is performed using the following classical programs: binarySeach, bub-

bleSort, factorial, fibonacci, gcd and hanoi. Besides being classic, the programs also

have different recursive structures, an important component for evaluating interproce-

dural analyses. The program bubbleSort has no procedure (other than main), hence it is

not recursive. Programs factorial and gcd contain single recursion, and programs fibonacci

and hanoi contain multiple recursion. These programs, all originally written in C, were

compiled, linked, and then disassembled for analysis. The code corresponding to the C

functions were then extracted and used for our analysis.

Table 7 presents our measurements from analyzing each of the programs using (a)

k-context abstraction (Lkcall) and (b) `-context abstraction (L`call), both using call-strings.

The metrics we use have been borrowed from (KHEDKER; KARKARE, 2008) and are

explained at the bottom of the table. The k presented in Table 7 gives the largest value for

which the k-context analysis does not run out of space, except for bubbleSort, factorial and

gcd. The data shows that the `-context abstraction produces fewer call strings per node

(#CSPN) and consequently takes less time. The improvement in time can be associated

with the recursive structure of the program. For bubbleSort, a program with no recursive

calls, interprocedural analysis using `-context takes approximately the same time. For

factorial and gcd, programs with single recursion, the `-context based analysis is over

10 times faster than k-context analysis (for the largest k where the analysis terminates).

However, for programs with multiple recursion `-context based analysis is 1000 times

faster.

The improvement in the approximation for these analyses is harder to quantify. There

are instances in which the `-context analysis may produce a value set [1,∞], while the

k-context analysis would produce [−∞,∞]. We implement the widening operator, rather

than the narrowing operator. Therefore, any comparison may not be definitive. However,

it can be observed that for all programs the `-context analysis is no worse than the k-

context analysis. As expected the k-context analysis resulted in flow of values across

non-valid interprocedural paths, after the k bound was reached. This, however, was not

the case for the `-context abstraction, which abstracts only the cycles in recursive paths.

4.1 Comparison of `- and k- Context Analyses 91

T
ab

le
7:

E
m

p
ir

ic
al

m
ea

su
re

m
en

ts
on

(a
)

k
-c

on
te

x
t-

ab
st

ra
ct

io
n

an
d

(b
)
`-

co
n
te

x
t-

ab
st

ra
ct

io
n
.

k
-c

on
te

x
t-

ab
st

ra
ct

io
n

`-
co

n
te

x
t-

ab
st

ra
ct

io
n

P
ro

gr
am

#
In

st
#

C
k

#
C

S
M

ax
L

#
C

S
P

N
#

In
te

rI
n
st

T
im

e
(m

s)
#

C
S

M
ax

L
#

C
S
P

N
#

In
te

rI
n
st

T
im

e
(m

s)

b
u
b
b
le

S
or

t
66

1
1

3
1

1
11

4
97

3
1

1
11

4
94

fa
ct

or
ia

l
26

2
21

44
21

43
58

6
48

4
5

2
3

72
47

gc
d

33
2

21
44

21
43

67
4

51
5

5
2

3
81

47

b
in

ar
y
S
ea

rc
h

77
3

6
19

1
6

19
0

81
9,

36
6

1.
2
×

10
6

15
3

13
2,

07
2

1,
04

5
fi
b

on
ac

ci
34

3
6

19
1

6
19

0
16

5,
53

9
2.

5
×

10
5

11
3

9
35

3
39

0
h
an

oi
39

3
7

38
3

7
38

2
58

3,
69

8
1.

3
×

10
6

11
3

9
32

5
15

6

#
In

st
is

th
e

n
u
m

b
er

of
in

st
ru

ct
io

n
s

#
C

is
th

e
n
u
m

b
er

of
ca

ll
si

te
s

#
C

S
is

th
e

to
ta

l
of

ca
ll

st
ri

n
gs

#
C

S
P

N
is

th
e

m
ax

im
u
m

n
u
m

b
er

of
ca

ll
st

ri
n
gs

re
ac

h
in

g
an

y
n
o
d
e

#
In

te
rI

n
st

d
en

ot
es

th
e

to
ta

l
n
u
m

b
er

of
in

te
rp

re
te

d
in

st
ru

ct
io

n
s

M
ax

L
d
en

ot
es

th
e

m
ax

im
u
m

le
n
gt

h
of

an
y

ca
ll

st
ri

n
gs

.

4.2 Improvement in Analysis of Obfuscated Code 92

4.2 Improvement in Analysis of Obfuscated Code

In the absence of any accepted gold standard or benchmark for evaluating obfuscated

programs, we crafted our own procedure. We performed the analysis using two sets of

programs. Programs in the first set were hand-crafted with a certain known obfuscated

calling structure. By hand-crafting the programs we were able to control the call-structure

and study how the performance changed with changes in the structure. While the extreme

case of the call-structures we created are unlikely to occur in real programs, they are

nonetheless revealing on how the performance varies with growth of context. The hand-

crafted programs were assembled using the Turbo Assembler 5.0. The second set contains

W32.Evol.a, a metamorphic virus that employs call obfuscation. This virus has been

thorougly analyzed in our lab, and hence we are in a position to evaluate the results of

our analysis. While we have thousands of malicious programs in our repository, we have

not used them for our analysis because of lack of knowledge of their details and hence our

inability to evaluate the results of their analysis.

To make our comparison quantitative we use two metrics: time and size of the sets.

Time is measured as the CPU time (in milliseconds) to complete an analysis. The size of

the sets is measured in terms of the cumulative size of the value sets for all instructions.

The size of the value set at an instruction i for context-insensitive analysis is denoted by

Sin(i), and that for context-sensitive analysis is denoted by Ssen(i). These are computed

as follows:

Sin(i) =
∑
r

|I#
in i r|+

∑
l

|I#
in i l|

Ssen(i) =
∑

νasm∈L̂
`

asm

(
∑
r

|I#
sen νasm i r|+

∑
l

|I#
sen νasm i l|)

where the function I#
in : I → R+L→ ASG+RIC and I#

sen : L̂
`

asm → I → R+L→ RIC

are the context-insensitive and context-sensitive abstractions of I# : I → R+L→ ℘(Z),

respectively.

Each program in the hand-crafted set contains a single procedure that adds two pa-

rameters and returns the value. The programs differ in the number of calls to this pro-

cedure. We constructed 10 programs, where the program number n has n “calls” to the

same procedure. Each “call” passes different pairs of numbers and is implemented using

a combination of two push instructions and a ret instruction. Although all stack contexts

in these programs are bounded by four (the number of push instructions), this class of

programs helps us evaluate the effect of the number of contexts.

4.2 Improvement in Analysis of Obfuscated Code 93

Figure 28 plots the time for analyzing the 10 programs. The results show that for

this limited class of programs the computational cost of context-sensitive analysis grows

linearly with the number of contexts (for the same procedure). In contrast, the cost for

context-insensitive analysis grows quadratically. This is expected because Venable et al.’s

context-insensitive analysis essentially performs intraprocedural analysis on the program.

Since the program is obfuscated, its calling structure is unavailable. The analysis, thus,

returns the results of a call to every“call”-site, leading to O(n2) paths for returning values.

Figure 28: Time evaluation of the set of hand-crafted, obfuscated programs.

Figure 29 shows the difference in the number of interpreted instructions for both

analysis, in which we can observe that the number of interpreted instructions in the

context-sensitive analysis grows linearly with the growth of contexts; however, it grows

quadratically in the context-insensitive analysis. The quadratic growth can be explained

due to the analysis being performed on a much larger number of invalid paths.

Figure 30 shows the size of the value sets for all stores in the whole program in the

context-sensitive analysis (Ssen) and context-insensitive analysis (Sin). We can observe

that Ssen grows linearly with the growth of contexts; however, Sin grows quadratically.

The quadratic growth can be explained due to the analysis being performed on a much

larger number of invalid paths.

To quantify the improvement resulting from analyzing W32.Evol.a using our context-

sensitive analysis over Venable et al.’s context-insensitive analysis we compute the dif-

ference in the size of the value sets resulting from the two analyses for each instruction.

Since the sizes resulting from context-insensitive analysis are always higher, we compute

the difference as Sin(i)− Ssen(i), for instruction i.

Figure 31 presents a histogram that shows the number of instructions where the

4.2 Improvement in Analysis of Obfuscated Code 94

Figure 29: Comparison of number of interpreted instructions between context-sensitive
and context-insensitive analyses.

Figure 30: Evaluation of the size of the value sets between context-sensitive and context-
insensitive analyses.

context-insensitive analysis gives larger sets (for various intervals of differences). The data

shows an improvement in precision with approximately 25% (25 of 98) of the interpreted

instructions of W32.Evol.a virus producing answers with better precision. The time for

analyzing W32.Evol.a virus was 300 ms and 1100 ms for context-sensitive and context-

insensitive analysis, respectively. Thus, our context-sensitive analysis is more efficient and

more precise than Venable et al.’s context-insensitive analysis.

4.3 Discussion 95

Figure 31: Histogram of approximations for Win32.Evol.a.

4.3 Discussion

We implement a context-sensitive variant of Venable et al.’s analysis that combines

the VSA and ASG (abstract stack graph) domains (VENABLE et al., 2005). Empirical

evaluation shows that context-sensitive analysis using `-context leads to several order of

magnitude improvement in the running time, as well as improvement in precision. The

results also show that context-sensitive analysis of obfuscated code produces more precise

and effective results than its context-insensitive counterpart. In the next chapter, we

summarize the major contributions of this dissertation and briefly describe future works

that we would like to explore.

96

5 Conclusions and further work

This chapter synthesizes the research outcomes of this dissertation and provides some

directions for further work.

5.1 Research Outcomes

The following contributions have been made in this dissertation.

A model of contexts based on the stack was proposed. This model is intended to

be more general than existing ones, in particular the call string approach of Sharir and

Pnueli (SHARIR; PNUELI, 1981). The notion of stack-context is a generalization of

calling-context, where instead of distinguishing contexts using call instructions, it uses

stack configuration. Context-sensitive interprocedural analyses when guided by a call-

graph (the basis to extract calling-contexts) are limited to only those binaries in which

the call-graph can be constructed and in which stack manipulation is performed using

standard compilation model(s). This precludes applying these analyses on obfuscated,

optimized, or hand-written code. As a result, malware forensic tools based on such anal-

yses can easily be thwarted. Such binaries are often crafted to break existing methods of

analysis. For instance, the IDA Pro disassembler identifies the procedures in a binary by

analyzing its call instructions. Any analysis based on such a disassembler would fail if

the binary does not use the call instruction to make a procedure call. Obfuscations that

defeat analyzers are commonly used by authors of malware. They are also used by authors

of legitimite programs to protect their intellectual property. The use of stack-contexts en-

ables performing context-sensitive analyses of binaries when the calling-contexts cannot

be distinguished, such as due to obfuscations.

Our method of context-sensitive analysis does not rely on finding procedure boundaries

and determining procedure calls. Instead, it defines a context based on the state of the

stack. Thus, any operation that pushes data on the stack creates a context. Conversely,

5.1 Research Outcomes 97

any operation that removes data from the stack removes a context. As a consequence, a

context in our method does not imply transfer of control (as in the case of procedure call

and return). The problem of determining transfer of control, also an important problem

for obfuscated binaries, is solved separately by using Balakrishnan and Reps’ Value-Set

Analysis (VSA) (BALAKRISHNAN; REPS, 2004).

We demonstrate how an abstract stack graph (ASG) may be used as a replacement of

the call-graph (CG) to perform interprocedural analysis. Since an ASG can be constructed

for programs that obfuscate calls or use stack manipulation operations in non-standard

ways, this adaptation makes it feasible to extend interprocedural analysis to a larger class

of binaries. The CG and ASG for the same program is isomorphic when the program

follows the standard compilation model. Thus, a call string of Sharir and Pnueli, which is

a finite length path in a call-graph, maps to what we term as a stack string, a finite length

path in an ASG. The adaptation is simple enough to directly impact interprocedural

analysis algorithms based on call-graph (BALAKRISHNAN, 2007),(MATTHEW et al.,

2005).

A model of abstracting context strings was introduced. This model adapts for use with

stack context prior work on performing context-sensitive analysis using calling-contexts.

The notion of call-strings has in the past been described in terms of valid paths of an

ICFG (SHARIR; PNUELI, 1981). We generalize the concept using abstract interpreta-

tion and define contexts using trace semantics. Unlike Sharir and Pnueli’s formulation

this generalization does not require transfer of control, an intrinsic part of semantics of

procedure call and return. Similarly, a `-context abstraction is derived that generalizes

for use with stack-context Emami et al.’s strategy of abstracting calling-contexts by re-

ducing cycles due to recursion (EMAMI; GHIYA; HENDREN, 1994) (which we term as

`-context), thus leading the way to the use of BDDs for making the analysis scalable (ZHU,

2005),(WHALEY; LAM, 2004).

Improvement on the DOC algorithm. DOC (Detector of Obfuscated Calls) was pro-

posed by Venable et al. (VENABLE et al., 2005). It is a static analysis suite that detects

obfuscations in executables, particularly procedure call and call-return obfuscations. It

uses abstract interpretation to find instances in which explicit call or call-return instruc-

tions are not used. However, DOC implementation has two limitations. First, it does

not perform interprocedural analysis (it treats the program as one big function). As a

result, it performs what amounts to be intraprocedural analysis on the entire program.

The resulting analysis is expensive and leads to very significant over approximation, thus

5.2 Directions for Further Work 98

confining its application to small programs.

We improved DOC algorithm by adding context-sensitivity using stack-contexts. The

resulting analysis is shown to be sound. To perform the evaluation, we implemented four

versions of Venable’s algorithm using the combination of the two context abstractions

(` and k) with the two methods for determining contexts (calling-contexts and stack-

contexts). Empirical results show that the context-sensitive algorithms produced better

(smaller) approximations in less time than the context-insensitive algorithm. This was

counter-intuitive because the expectation due to maintaining data for each context sup-

posedly consumes more time. The loss due to increased data appears to be overcome by

the decrease in the number of instructions interpreted. The context-sensitive algorithm

performs fewer approximation operations, implying that it results in answers with better

precision.

The results regarding implications of obfuscated code in the AV detectors were pub-

lished in the Integrated Seminar of Software and Hardware (SEMISH 2007) (BOCCARDO;

MANACERO JÚNIOR.; FALAVINHA JÚNIOR., 2007). The use of the Abstract Stack

Graph (ASG) to adapt the call-graph (CG) to analyze obfuscated binaries was pub-

lished in the Brazilian Symposium on Information and Computer System Security (SBseg

2009) (BOCCARDO et al., 2009). The proposed formalism using abstract interpretation

to generalize prior work on performing context-sensitive analysis using calling-contexts

and to perform the analysis of obfuscated assembly programs was submitted to the Par-

tial Evaluation and Program Manipulation (PEPM 2010).

5.2 Directions for Further Work

Directions for further work are:

Completeness of the abstract interpreters. As future work we may consider the possi-

bility of discussing the completeness, in the abstract interpretation sense, of the abstrac-

tions of this dissertation (or their completeness refinement). It might be interesting to

verify if these abstractions are complete (or if they are complete for some properties of

the semantics, for example for the system call behavior), i.e., if there is no loss of preci-

sion accumulated in the abstract computation. For example, abstracting the result of the

concrete-trace semantics leads to the same result obtained by the derived context-sensitive

5.2 Directions for Further Work 99

analyzer. Completeness could give some formal insight on the precision of the abstract

analysis.

Improvements on DOC algorithm. The following improvements can be done in the

DOC algorithm in order to make it more efficient and useful for other applications.

• Memory Support - The current implementation provides support for only the register

and stack. Extending DOC to have full memory support will not only help improve

the results of call obfuscation detection, but may also help to make the project

useful for other applications.

• Built-in Disassembler - The first phase of the DOC algorithm consists of disassem-

bling the executable. However, this process is manual, and it needs to be made in a

disassembler. The output of the disassembler is then loaded into the DOC to per-

form its analysis. Constructing a built-in disassembler in the DOC improves its user

interface. It is also possible to use context-sensitive value-set analysis to improve

disassembly capabilities.

• Unpacking capability - The use of packers has become more popular among malware

writers. A packed piece of malware has a better chance of remaining undetected for

a long time, as well as spreading faster due to its smaller size. Packing an existing

piece of malware is also by far the easiest way to create a ‘new’ one. Of the new

incoming samples we see more than 50% are produced simply by repacking existing

malware (STEPAN, 2006) using different packers. Therefore, adding unpacking

capability to the DOC will be useful for malware forensics of packed malwares.

100

References

AHO, A. V. et al. Compilers: principles, techniques, and tools. 2.ed. Upper Saddle
River: Addison Wesley, 2006.

AMME, W. et al. Data dependence analysis of assembly code. International Journal
of Parallel Programming, Dordrecht, v. 28, n. 5, p. 431–467, 2000.

BACKES, W. Programmanalyse des XRTL Zwischencodes (In German.). 2004.
Thesis (PhD) — Universitaet de Saarlandes, 2004.

BALAKRISHNAN, G. WYSINWYX: What You See Is Not What You eXecute. 2007.
Thesis (PhD) — Computer Science Department., University of Wisconsin, Madison, WI,
2007.

BALAKRISHNAN, G.; REPS, T. Analyzing memory accesses in x86 executables. In:
INTERNATIONAL CONFERENCE ON COMPILER CONSTRUCTION (CC), 2004,
Barcelona. Proceedings of the... Barcelona, Spain: Springer-Verlag, 2004. p. 5–23.

BALAKRISHNAN, G.; REPS, T. W. Divine: discovering variables in executables.
In: VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION
(VMCAI), 8, 2007, Nice. Proceedings of the... Nice: Springer Berlin / Heidelberg,
2007. p. 1–28.

BALL, T.; MILLSTEIN, T.; RAJAMANI, S. K. Polymorphic predicate abstraction.
ACM Transactions on Programming Languages and Systems (TOPLAS),
ACM, New York, NY, USA, v. 27, n. 2, p. 314–343, 2005. ISSN 0164-0925.

BERGERON, J. et al. Detection of malicious code in COTS software: a short survey. In:
INTERNATIONAL SOFTWARE ASSURANCE CERTIFICATION CONFERENCE
(ISACC), 1, 1999, Washington. Proceedings of the... Washington, DC: IEEE Press.,
1999.

BERGERON, J. et al. Static detection of malicious code in executable programs.
In: INTERNATIONAL SYMPOSIUM ON REQUIREMENTS ENGINEERING FOR
INFORMATION SECURITY (SREIS), 2001, Indianapolis. Electronic proceedings of
the... Indianapolis: Springer Verlag, 2001. p. 1–8.

BERGERON, J. et al. Static analysis of binary code to isolate malicious behaviors.
In: WORKSHOP ON ENABLING TECHNOLOGIES ON INFRASTRUCTURE FOR
COLLABORATIVE ENTERPRISES (WETICE), 8, 1999, Washington. Proceedings
of the... Washington: IEEE Computer Society, 1999. p. 184–189.

BOCCARDO, D. R. et al. Adapting call-string approach for x86 obfuscated binaries.
In: BRAZILIAN SYMPOSIUM ON INFORMATION AND COMPUTER SYSTEM
SECURITY (SBSeg), 9, 2009, Campinas. Proceedings of the... Campinas: SBC, 2009.

References 101

BOCCARDO, D. R.; MANACERO JÚNIOR., A.; FALAVINHA JÚNIOR., J. N.
Implicações da ofuscação de código no desenvolvimento de detectores de código malicioso.
In: SEMINÁRIO INTEGRADO DE SOFTWARE E HARDWARE (SEMISH), 34, 2007,
Rio de Janeiro. Anais... Rio de Janeiro: SBC, 2007. p. 2277–2291.

CHRISTODORESCU, M.; JHA, S. Static analysis of executables to detect malicious
patterns. In: USENIX SECURITY SYMPOSIUM, 12, 2003, Washington. Proceedings
of the... Washington: USENIX Association, 2003. p. 169–186.

CIFUENTES, C.; FRABOULET, A. Interprocedural data flow recovery of
high-level language code from assembly. Queensland. Tech Report. University of
Queensland, 1997.

CIFUENTES, C.; FRABOULET, A. Intraprocedural static slicing of binary executables.
In: INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE (ICSM),
13, 1997, Bari. Proceedings of the... Bari: IEEE Computer Society, 1997. p. 188–195.

CIFUENTES, C.; SIMON, D.; FRABOULET, A. Assembly to high-level language
translation. In: INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE
(ICSM), 14, 1998, Bethesda. Proceedings of the... Bethesda: IEEE Press, 1998. p.
228–237.

COLLBERG, C.; THOMBORSON, C.; LOW, D. A taxonomy of obfuscating
transformations. Auckland. Tech Report. University of Auckland, 1997.

COLLBERG, C. S.; THOMBORSON, C. Watermarking, tamper-proofing, and
obfuscation - tools for software protection. IEEE Transactions on Software
Engineering, New York, v. 28, n. 8, p. 735–746, 2002.

COUSOT, P. Abstract interpretation. ACM Computing Surveys, New York, v. 28,
n. 2, p. 324–328, 1996.

COUSOT, P.; COUSOT, R. Static determination of dynamic properties of programs. In:
INTERNATIONAL SYMPOSIUM ON PROGRAMMING, 2, 1976, Paris. Proceedings
of the... Paris: [s.n.], 1976. p. 106–130.

COUSOT, P.; COUSOT, R. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In: PRINCIPLES
OF PROGRAMMING LANGUAGES (POPL), 4, 1977, Los Angeles. Proceedings of
the... Los Angeles: ACM, 1977. p. 238–252.

COUSOT, P.; COUSOT, R. Systematic design of program analysis frameworks by
abstract interpretation. In: PRINCIPLES OF PROGRAMMING LANGUAGES
(POPL), 6, 1979, San Antonio. Proceedings of the... San Antonio: ACM, 1979. p.
269–282.

COUSOT, P.; COUSOT, R. Modular static program analysis. In: INTERNATIONAL
CONFERENCE ON COMPILER CONSTRUCTION (CC), 11, 2002, Grenoble.
Proceedings of the... Grenoble: Springer-Verlag, 2002. p. 159–178.

COUSOT, P.; COUSOT, R. Basic concepts of abstract interpretation. In: IFIP
CONGRESS TOPICAL SESSIONS, 2004, Toulouse. Proceedings of the... Toulouse:
Kluwer Academic Publishers, 2004. p. 359–366.

References 102

DALLA PREDA, M. et al. A semantics-based approach to malware detection. In:
PRINCIPLES OF PROGRAMMING LANGUAGES (POPL), 34, 2007, Nice, France.
Proceedings of the... New York: ACM, 2007. p. 377–388.

DAVEY, B. A.; PRIESTLEY, H. A. Introduction to lattices and order. Cambridge:
Cambridge Press, 1990.

DEBRAY, S. K.; MUTH, R.; WEIPPERT, M. Alias analysis of executable code. In:
PRINCIPLES OF PROGRAMMING LANGUAGES (POPL), 25, 1998, San Diego.
Proceedings of the... San Diego: ACM, 1998. p. 12–24.

ECLIPSE. Eclipse Foundation. Data Rescue, Liege, Belgium, 2009. Available from
Internet: <http://www.eclipse.org. Last accessed July 2009>.

EMAMI, M.; GHIYA, R.; HENDREN, L. J. Context-sensitive interprocedural points-to
analysis in the presence of function pointers. Sigplan ACM, New York, v. 29, n. 6, p.
242–256, 1994.

GIERZ, G. et al. A compendium on continuous lattices. Berlin: Springer-Verlag,
1980.

GOODWIN, D. W. Interprocedural dataflow analysis in an executable optimizer. In:
PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI), 1997,
Las Vegas. Proceedings of the... New York: ACM, 1997. p. 122–133.

GRÄTZER, G. General lattice theory. Basel: Birkhäuser Verlag, 1978.

GULWANI, S.; TIWARI, A. Computing procedure summaries for interprocedural
analysis. In: EUROPEAN SYMPOSIUM ON PROGRAMMING (ESOP), 16, 2007,
Braga. Proceedings of the... Braga: Springer, 2007. v. 4421, p. 253–267.

IDAPRO. Ida Pro - Disassembler. 2009. Data Rescue, Liege, Belgium. Available from
Internet: <http://www.datarescue.com. Last accessed July 2009>.

KARKARE, B.; KHEDKER, U. P. An improved bound for call strings based
interprocedural analysis of bit vector frameworks. ACM Transactions on
Programming Language Systems, New York, v. 29, n. 6, 2007.

KHEDKER, U.; KARKARE, B. Efficiency, precision, simplicity, and generality in
interprocedural data flow analysis: resurrecting the classical call strings method. Lecture
Notes in Computer Science, Germany, v. 4959, p. 213–228, 2008.

KINDER, J.; VEITH, H.; ZULEGER, F. An abstract interpretation-based framework for
control flow reconstruction from binaries. In: VERIFICATION, MODEL CHECKING,
AND ABSTRACT INTERPRETATION (VMCAI), 10, 2009, Savannah. Proceedings
of the... Savannah: Springer-Verlag, 2009. p. 214–228.

KUMAR, E. U.; VENABLE, M. DOC - Detector of Obfuscated Calls. 2007.
http://sourceforge.net/projects/obfuscation. Last accessed July 2009.

LAKHOTIA, A.; KUMAR, E. U. Abstack stack graph to detect obfuscated calls in
binaries. In: INTERNATIONAL WORKSHOP ON SOURCE CODE ANALYSIS AND
MANIPULATION (SCAM), 4, 2004, Chicago. Proceedings of the... Chicago: IEEE
Computer Society, 2004. p. 17–26.

References 103

LAKHOTIA, A.; KUMAR, E. U.; VENABLE, M. A method for detecting obfuscated
calls in malicious binaries. IEEE Transactions on Software Engineering, Piscataway,
v. 31, n. 11, p. 955–968, 2005.

LAKHOTIA, A.; SINGH, P. K. Challenges in getting ‘formal’ with viruses. Virus
Bulletin, Virus Bulletin Ltd., p. 15–19, September 2003.

LAL, A.; REPS, T. Improving pushdown system model checking. In: COMPUTER-
AIDED VERIFICATION, 18, 2006, Seattle. Proceedings of the... Seattle:
Springer-Verlag, 2006.

LARUS, J. R.; SCHNARR, E. Eel: Machine-independent executable editing. In:
PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI), 1995, La
Jolla. Proceedings of the... La Jolla: ACM, 1995. p. 291–300.

LHOTÁK, O.; HENDREN, L. Context-sensitive points-to analysis: Is it worth it? In:
INTERNATIONAL CONFERENCE ON COMPILER CONSTRUCTION (CC), 15,
2006, Vienna. Proceedings of the... Vienna: Springer, 2006. v. 3923, p. 47–64.

LINN, C.; DEBRAY, S. Obfuscation of executable code to improve resistance to static
disassembly. In: COMPUTER AND COMMUNICATIONS SECURITY (CCS), 10,
2003, Washington. Proceedings of the... Washington: ACM, 2003. p. 290–299.

MATTHEW, B. G. et al. Practical and accurate low-level pointer analysis. In:
SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION (CGO), 3, 2005, San
Jose. Proceedings of the... San Jose: IEEE Computer Society, 2005. p. 291–302.

MÜLLER-OLM, M.; SEIDL, H. Precise interprocedural analysis through linear algebra.
In: PRINCIPLES OF PROGRAMMING LANGUAGES (POPL), 31, 2004, Venice.
Proceedings of the... Venice: ACM, 2004. p. 330–341.

MYCROFT, A. Type-based decompilation. In: EUROPEAN SYMPOSIUM ON
PROGRAMMING (ESOP), 8, 1999. Amsterdam. Proceedings of the... Amsterdam:
Springer-Verlag, 1999. p. 208–223.

NIELSON, F.; NIELSON, H. R.; HANKIN, C. Principles of program analysis.
Secaucus: Springer-Verlag, 1999.

OLLYDBG. OllyDbg debugger. Oleh Yuschuk, 2009. Available from Internet:
<http://www.ollydbg.de/. Last accessed July 2009>.

REPS, T.; BALAKRISHNAN, G. Improved memory-access analysis for x86 executables.
In: INTERNATIONAL CONFERENCE ON COMPILER CONSTRUCTION (CC),
2008, Budapest. Proceedings of the... Budapest: Springer Berlin / Heidelberg, 2008.
p. 16–35.

REPS, T.; BALAKRISHNAN, G.; LIM, J. Intermediate-representation recovery from
low-level code. In: WORKSHOP ON PARTIAL EVALUATION AND PROGRAM
MANIPULATION (PEPM), 2006, Charleston. Proceedings of the... Charleston:
ACM, 2006. p. 100–111.

References 104

REPS, T.; HORWITZ, S.; SAGIV, M. Precise interprocedural dataflow analysis via
graph reachability. In: PRINCIPLES OF PROGRAMMING LANGUAGES (POPL),
22, 1995, San Francisco. Proceedings of the... San Francisco: ACM, 1995. p. 49–61.

REPS, T. et al. Weighted pushdown systems and their application to interprocedural
dataflow analysis. Science of Computer Programming, Amsterdam, v. 58, n. 1-2, p.
206–263, 2005.

SAGIV, M.; REPS, T.; HORWITZ, S. Precise interprocedural dataflow analysis with
applications to constant propagation. In: INTERNATIONAL JOINT CONFERENCE
CAAP/FASE ON THEORY AND PRACTICE OF SOFTWARE DEVELOPMENT, 6,
1995, London. Proceedings of the... London: Springer-Verlag, 1995. p. 651–665.

SCHWARZ, B.; DEBRAY, S.; ANDREWS, G. Disassembly of executable code revisited.
In: WORKING CONFERENCE ON REVERSE ENGINEERING (WCRE), 9, 2002,
Richmond. Proceedings of the... Richmond: IEEE Computer Society, 2002.

SCHWARZ, B.; DEBRAY, S. K.; ANDREWS, G. R. PLTO: A link-time optimizer for
the Intel IA-32 architecture. In: WORKSHOP ON BINARY TRANSLATION (WBT),
2001, Barcelona. Proceedings of the... Barcelona: [s.n.], 2001.

SHARIR, M.; PNUELI, A. Two approaches to interprocedural data flow analysis.
Program Flow Analysis: theory and applications. Englewood Cliffs: Prentice-Hall, 1981.

SRIVASTAVA, A.; WALL, D. A practical system for intermodule code optimization at
linktime. Journal of Programming Languages, New York, v. 1, n. 1, p. 1–18, 1993.

STEPAN, A. Improving proactive detection of packed malware. In: VIRUS BULLETIN
CONFERENCE, 16, 2006, Montreal. Proceedings of the... London: Virus Bulletin
Ltd., 2006.

SYMANTEC. Understanding Heuristics. 1997. Available from Internet:
<http://www.symantec.com/avcenter/reference/heuristc.pdf. Last accessed
July 2009>.

SZÖR, P.; FERRIE, P. Hunting for metamorphic. In: VIRUS BULLETIN
CONFERENCE, 11, 2001, Prague. Proceedings of the... Prague: Virus Bulletin,
2001. p. 123–144.

TARSKI, A. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, Berkeley, v. 5, n. 2, p. 285–309, 1955.

THOMPSON, K. Reflections on trusting trust. Communications of the ACM, New
York, v. 27, n. 8, p. 761–763, 1984.

VENABLE, M. et al. Analyzing memory accesses in obfuscated x86 executables.
In: DETECTION OF INTRUSIONS AND MALWARE & VULNERABILITY
ASSESSMENT (DIMVA), 2005, Vienna. Proceedings of the... Vienna: Springer
Berlin / Heidelberg, 2005. p. 1–18.

VENKITARAMAN, R.; GUPTA, G. Static program analysis of embedded executable
assembly code. In: INTERNATIONAL CONFERENCE ON COMPILERS,
ARCHITECTURE, AND SYNTHESIS FOR EMBEDDED SYSTEMS (CASES), 2004,
Washington. Proceedings of the... New York: ACM, 2004. p. 157–166.

References 105

VINCIGUERRA, L. et al. An experimentation framework for evaluating disassembly and
decompilation tools for c++ and java. In: WORKING CONFERENCE ON REVERSE
ENGINEERING (WCRE), 10, 2003, Victoria. Proceedings of the... Washington:
IEEE Computer Society, 2003. p. 14.

WALENSTEIN, A. et al. Normalizing metamorphic malware using term-rewriting.
In: INTERNATIONAL WORKSHOP ON SOURCE CODE ANALYSIS AND
MANIPULATION (SCAM), 6, 2006, Philadelphia. Proceedings of the... Philadelphia:
IEEE Computer Society, 2006.

WHALEY, J.; LAM, M. S. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In: PROGRAMMING LANGUAGE DESIGN AND
IMPLEMENTATION (PLDI), 2004, Washington. Proceedings of the... New York:
ACM, 2004. p. 131–144.

WILSON, R. P.; LAM, M. S. Efficient context-sensitive pointer analysis for c programs.
In: PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI),
1995, La Jolla. Proceedings of the... New York: ACM, 1995. p. 1–12.

WROBLEWSKI, G. General method of program code obfuscation. In: SOFTWARE
ENGINEERING RESEARCH AND PRACTICE (SERP), 2002, Las Vegas. Proceedings
of the... Las Vegas: [s.n.], 2002.

XIE, Y.; AIKEN, A. Scalable error detection using boolean satisfiability. In:
PRINCIPLES OF PROGRAMMING LANGUAGES (POPL), 32, 2005, Long Beach.
Proceedings of the... Long Beach: ACM, 2005. p. 351–363.

ZHU, J. Towards scalable flow and context sensitive pointer analysis. In: DESIGN
AUTOMATION CONFERENCE (DAC), 42, 2005, Anaheim. Proceedings of the...
New York: ACM, 2005. p. 831–836.

ZHU, J.; CALMAN, S. Symbolic pointer analysis revisited. In: PROGRAMMING
LANGUAGE DESIGN AND IMPLEMENTATION (PLDI), 2004, Washington.
Proceedings of the... New York: ACM, 2004. p. 145–157.

