II. Damping Control of Vibrating Systems

Sang-Myeong Kim
UNESP @ Ilha Solteira
2013

The topics covered

- General Feedback Control
- Active Control of S&V

1. PID, Lead-Lags, Notch filters
2. EDA (Electrical Dynamic Absorber)
I. Principle

Background & Concept

II. Application Examples

1. Active Vibration Isolation (IEEE TCST 2008)
2. Transducer Damping (JSV1 2011)
3. Multi-Modal Control (SMS1 2011)
4. PPF v.s. NPF (SMS2 2011)
5. Broadband Vibration Control (SMS3 2011)
6. Non-collocated Control (JSV2 2013)
7. Time Delay Control (SMS4 2013)
8. Vibration Control of a Flexible Manipulator (SMS5 2013)

III. Potential Applications
Background: Mechanical Damper v.s. Mechanical Dynamic Vibration Absorber

Parallel Form

- **Coefficient:** c_a
- **Damping:** v
- **Force:** F

Serial Form

- **Coefficient:** k_a
- **Stiffness:** v
- **Force:** F

Contributor: Hartog (1947)

Impedance

$$Z_a = c_a$$

$$Z_a = \frac{1}{j\omega m_a} + \frac{1}{c_a} + \frac{j\omega}{k_a}$$

Graphs:

- Velocity vs. Frequency
- Impedance vs. Frequency

Equivalent Form
Background: Mechanical Damper v.s. Mechanical Dynamic Vibration Absorber

<table>
<thead>
<tr>
<th>Tools</th>
<th>Damper</th>
<th>Dynamic Absorber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>Broadband Device</td>
<td>Narrowband Device</td>
</tr>
<tr>
<td>Mechanism</td>
<td></td>
<td>Narrowband Skyhook Damper</td>
</tr>
<tr>
<td>Advantage</td>
<td>• Installation (ex. Vehicles)</td>
<td>• Vibration Isolation & Transmission</td>
</tr>
</tbody>
</table>

![Car and damper diagram](image)

Examples of DVA

- Simple cantilever form
- Buildings
- Automobiles
- Engine break

![Examples of DVA](image)
Examples of DVA

- Harmonic Dampers for Engines
- Helmholtz Resonator
- Suction Resonator
- Muffler

Piezo Actuator

Electromagnetic Actuator

Background: Passive Electrical Dynamic Absorber
Background:

Electrical Damper (ED) v.s. **Electrical Dynamic Absorber (EDA)**

ED

- Electrical Damper
- Control Force
- Mechanical System
- Controller
- Response
- Equivalent Model

EDA

Development of Electrical Dynamic Absorber (EDA)

- Electrical Damper
 \[H(j\omega) = c_a \]
- Electrical Dynamic Absorber
 \[H(j\omega) = c_a \frac{j2\zeta\omega_d\omega}{\omega^2 - \omega_d^2 + j2\zeta\omega_d\omega} \]

Equivalent Model
Comparison between ED and EDA

- \(H(j \omega) \)

Tools

- **Electrical Damper**
 - Broadband Device
 - Narrowband Skyhook Damper

- **Electrical Dynamic Absorber**
 - Narrowband Device

Performance

- Broadband Device
- Narrowband Device

Mechanism

- Narrowband Skyhook Damper

Advantage

- Robustness
 - Effectively in the control bandwidth & Ineffectively otherwise.

"EDA is ALWAYS better than ED."

Advantages of **Electrical Dynamic Absorber (EDA)**

Most eminent advantages come from the fact that it is a narrowband controller.

If it is tuned to a mode, it simply becomes a modal controller controlling only a single target mode.

1. multi-modal control is feasible.
2. Non-collocated control is feasible for multiple modes of mixed phases
3. Time delay system control is feasible
 - by compensating each of multiple modes of different phases.
Summary

Passive Tools
<table>
<thead>
<tr>
<th>Mechanical Damper</th>
<th>Mechanical Dynamic Absorber</th>
</tr>
</thead>
</table>

Active Tools
<table>
<thead>
<tr>
<th>Electrical Damper</th>
<th>Electrical Dynamic Absorber</th>
</tr>
</thead>
</table>

Three General Tools for Noise & Vibration Control

Performance

Advantages:
1. Effective
2. Convenient to design
3. Very stable
II. Applications

1. Active Vibration Isolation
2. Transducer Damping
3. Multi-Modal Control
4. PPF vs. NPF
5. Broadband Vibration Control
6. Non-Collocated Control
7. Time Delay Control
8. Vibration Control of a Flexible Manipulator

Design Rules – using Den Hartog’s Fixed-Point Theory

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Three Ways to realize the same EDA

1. Active Vibration Isolation
2. Transducer Damping
3. Multi-Modal Control
4. PPF vs. NPF
5. Broadband Vibration Control
6. Non-Collocated Control
7. Time Delay Control
8. Vibration Control of a Flexible Manipulator

Methods

Position

Velocity

Acceleration

PPF (position acceleration feedback)

VVF (velocity velocity feedback)

APF (acceleration position feedback)

2nd order HP filter

2nd order BP filter

2nd order LP filter

Obtain maximally flat response.

Velocity (dB) vs. Position

Normalized Frequency

Velocity (dB) vs. Position

Normalized Frequency

Design Rules – using Den Hartog’s Fixed-Point Theory

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (db) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

Velocity (dB) vs. Position

Obtain maximally flat response.

Frequency tuning \(\omega_d = \omega_p \sqrt{\text{mass ratio}/2} \)

Normalized Frequency

2. Electrical Transducer Damping (JSV 2011)

3. Modal Control using strain sensors (SMS 2011)

4. Multi-modal Control using Acc. (SMS 2011)

5. Broadband Control (SMS 2011)

6. Non-collocated Control (JSV 2013)

7. Time Delay Control (SMS 2013)

8. Flexible Manipulator (SMS 2013)

1. Active Vibration Isolation: Background (1/3)

Commercial product by multiprobe

Test rig

Construction

Performance

4-mount experimental rig

Kinetic energy

Frequency
1. Active Vibration Isolation: Goal (2/3)

- Task: Improve Stability and Performance
- Solution: EDA
- Method: Comparison between ED and EDA

Isolator
Primary shaker
Equipment and secondary shaker

Digital EDA filter using an x-PC Target

\[H(j\omega) = \frac{j2\zeta\omega_a\omega}{\omega_a^2 - \omega^2 + j2\zeta\omega_a\omega} \]

1. Active Vibration Isolation: Performance (3/3)

EDA works as well as ED.

EDA is more robust to undesirable effects outside the control bandwidth.
2. Transducer Damping: Background (1/3)

Inertial Actuator

![Inertial Actuator Image]

Accelerometer

![Accelerometer Image]

Figure 2: Typical actuator response. Actuator with 100 gram inertial mass is attached to 20 kilogram ground.

2. Transducer Damping: Construction (2/3)

![Construction Diagram]

Passive shunt circuit

EDA
2. Transducer Damping: Performance (3/3)

Contributions

1. Exact mechanical analogy

2. Optimal absorber damping \[\omega_a = \omega_s \quad \zeta_a = \sqrt{\text{(mass ratio)}/2} \]

3. Multi-Modal Control: Experimental Setup (1/3)

Plant description

Digital EDA filter

Task: Suppress the first three modes

Plant Response

1st Mode

2nd Mode

3rd Mode

Contributions

- Optimal and robust control methodology;
- Optimal because the controller maximally flattens the mobility;
- Robust because it does not allow the control spillover any more than 2 dB.
4. Comparison between PPF and NPF: Plant (1/2)

Using PZT + PVDF

Digital EDA filter using an x-PC Target

Plant Response

(a) Generalized Stability Response (dB)

\[H(j \omega) = \frac{-k_a \omega_a^2}{\omega_a^2 - \omega^2 + j2\zeta \omega_a \omega} \]

(b) Imaginary

\[\text{Lowpass Filter} \quad H_{PPF}(j \omega) = \frac{-k_a \omega_a^2}{\omega_a^2 - \omega^2 + j2\zeta \omega_a \omega} \]

\[\text{Highpass Filter} \quad H_{NPF}(j \omega) = \frac{k_a(j \omega)^2}{\omega_a^2 - \omega^2 + j2\zeta \omega_a \omega} \]

4. Comparison between PPF and NPF: Performance (2/2)

Contributions

1. NPF = eDVA
2. NPF is useful for multi-modal control
5. Robust Broadband Vibration Control: Setup (1/4)

Plant: The same as for 3. the Modal Control using an Accelerometer

Task: Suppress all the vibrations in the frequency bandwidth of two decades from 10 Hz to 1 kHz

5. Robust Broadband Vibration Control: Analog Control Filter (2/4)

\[
C(j\omega) = m_2 \left(\frac{\omega_a^2}{\omega_a^2 - \omega^2 + jb\omega_a\omega} \right) \left(\frac{\omega_c}{\omega_c + j\omega} \right)
\]
5. Robust Broadband Vibration Control: Performance (3/4)

Original plant

![Graph showing Original plant performance.]

Perturbed plant

![Graph showing Perturbed plant performance.]

5. Robust Broadband Vibration Control: Robustness (4/4)

Original plant

![Graph showing Original plant robustness.]

Perturbed plant

![Graph showing Perturbed plant robustness.]

Conclusions

It is possible to control broadband vibrations using a single EDA. This has been possible because it have been implemented electrically.
6. Non-Collocated Control: Setup (1/3)

Concept: negatively FB for in-phase modes and positively FB for out-of-phase modes.

Task: Suppress both in- and out-of-phase modes.

6. Non-Collocated Control: Concept (2/3)

Concept: negatively FB for in-phase modes and positively FB for out-of-phase modes.

Plant mobility

Controller

Loop Gain

(a)

(b)

(c)
6. Non-Collocated Control : Results (3/3)

Original plant

Perturbed plant

7. Time Delay Control : Setup (1/3)

Task : Suppress the first two modes that are time delayed
7. Time Delay Control: Plant (2/3)

7. Time Delay Control: Results (3/3)
Figure 1. Experimental setup for both motion and vibration control of a flexible beam.

Figure 2. Measured Nyquist plot of the plant, where numbers 1–6 indicate the vibration mode orders.
8. Vibration Control of a Flexible Manipulator (3/3)

Figure 4. Control of a random disturbance without (dash-dot lines) and with (solid lines) the vibration control circuit: (a) the hub displacement, and (b) the tip displacement.

Figure 5. Control performance for a step input of 2° without (dash-dot lines) and with (solid lines) the vibration control circuit: (a) the hub displacement, and (b) the tip acceleration.

II. Potential Applications

1. Vibrations
2. Dynamics
3. Acoustics
Summary

- **EDA** is an electrical realization of mechanical dynamic vibration absorber.

- It is stable and robust as it realizes a physically existing mechanism.

- It is rather a general method that has many applications: ex. multi-modal control, non-collocated control, time delay control.

- Prospect: It may survive for a long time as we can not think of any simpler and more effective method to control a mode than using the dynamic absorption mechanism.

- Hot Challenges: Adaptive EDA, Non-resonance control
References

- S M Kim, M J Brennan, Active vibration control using delayed resonant feedback, Smart Materials and Structures 22, 095013 (7pp) (2013)

Those recommendable to read in blue.