Sources and measures of noise

WHAT IS NOISE?

Sound may be defined as a time-varying fluctuation of the density of a fluid from its ambient (mean) state, which is accompanied by a proportional disturbance in the pressure from its mean value which propagates at the speed of sound. Sound may be desired or undesired. Unwanted sound is called noise. Noise may:

- Cause annoyance
- Be stressful
- Degrade speech intelligibility
- Lessen enjoyment of music
- Harmful to hearing

WHAT IS A SOUND SOURCE? Example: car engine

combustion in cylinders ↓ acts within the structure

engine vibration radiates noise ↓ acts on the air

sound is radiated from car ↓ as seen at the wayside

traffic flow on road

as seen at a distance

DIVERSITY OF NOISE SOURCES PRESENT IN INDUSTRIAL MACHINES

After Walker and White, "Noise and Vibration", Ellis 1982)

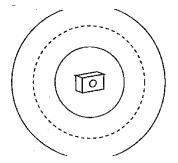
A survey has been undertaken in which the generating mechanisms of 45 different machines are identified. These are:

- jet emission
- fan
- hammer deceleration
- workpiece distortion or vibration
- anvil/case ringing
- supporting structure vibration
- air ejection
- blow-off valves

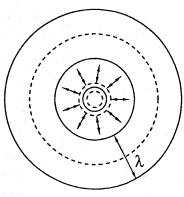
CLASSIFICATION OF NOISE SOURCES

Sources of sound are extremely diverse in their:

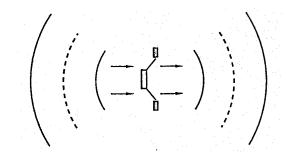
- I. Generation mechanism
- II. Mechanic-acoustical efficiency (see lecture on 'sound radiation')
- III. (Free field) directivity
- IV. Frequency spectra


Most mechanical noise sources consist of a mixture of various source types. Consequently, it is difficult to simply categorize them and to devise general formula for predicting their radiated sound.

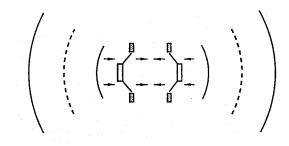
Nevertheless, sources may be generally categorized in terms of only three fundamental source types: Acoustic monopole, dipoles and quadrupoles.


BASIC SOURCE TYPES

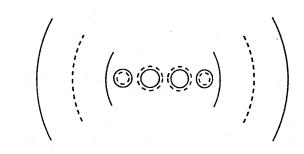
Monopole


fluctuating addition / withdrawal of mass

equivalent to a pulsating sphere



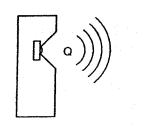
Waves move outwards at speed c₀ **Dipole** fluctuating force



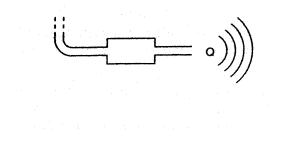
equivalent to two equal and opposite monopoles

Quadrupole fluctuating stress

equivalent to four monopoles



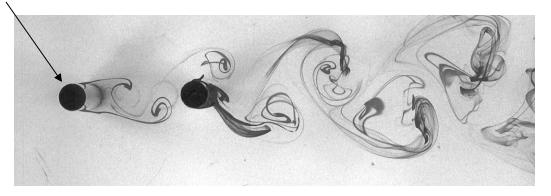
 $c_0 = f\lambda$


MONOPOLES: FLUCTUATING VOLUME/MASS SOURCES

Examples

Loudspeakers

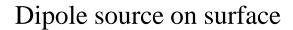
Exhaust pipe radiation

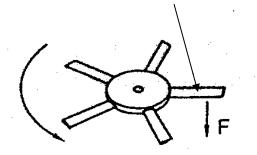


Air compressors

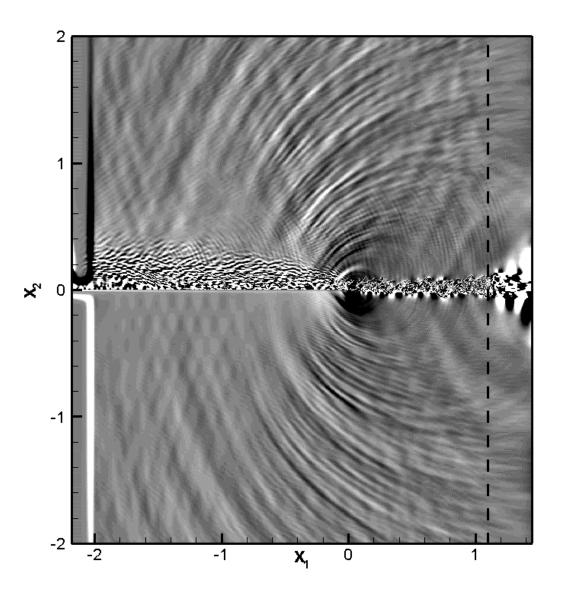
Unsteady combustion

DIPOLES: APPLICATION OF TIME-VARYING FORCES TO A FLUID WITHOUT VOLUME DISPLACEMENT

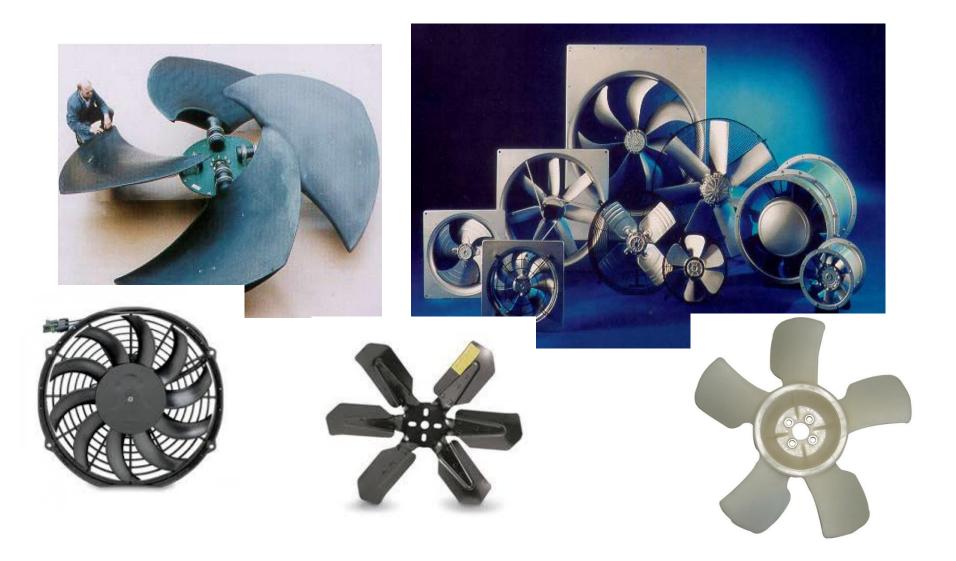

Dipole source on surface

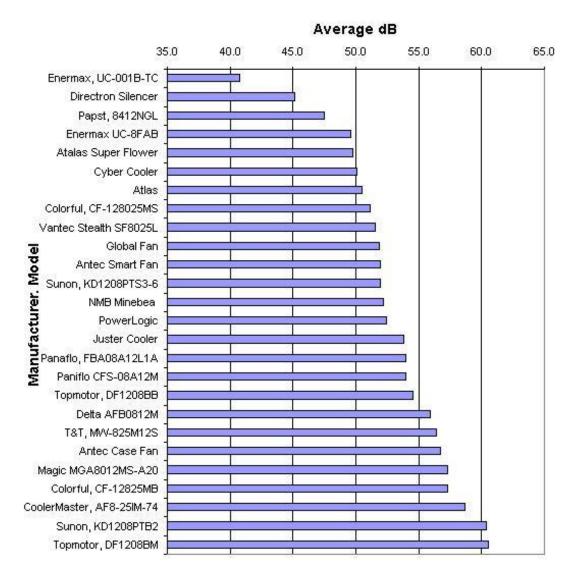


Examples


Whistling car antenna

Turbulence (unsteady flow) acting on a rigid surface, such as in fan noise and airframe noise



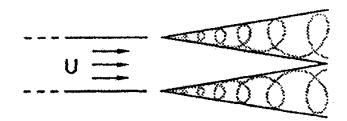

DIPOLES: AIRFOIL NOISE

Dipole noise: Fan noise

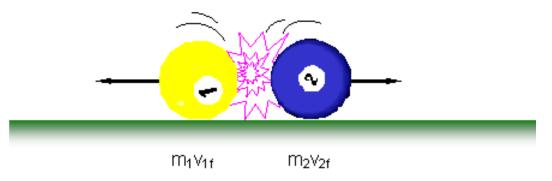
Fan noise can be reduced by good design

Comparison of the noise levels due to a variety of 80mm case fans with roughly the same current rating

The noisiest and quietest fan


Noisiest

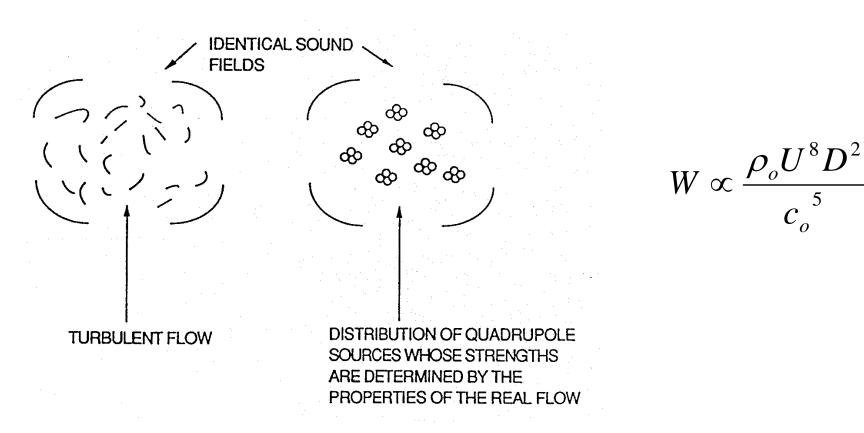
Quietest


QUADRUPOLES: APPLICATION OF TIME-VARYING FORCES TO A FLUID WITHOUT VOLUME DISPLACEMENT OR NET FORCE ACTING ON FLUID

Examples

Sound radiation by free turbulence

'Clack' of colliding billiard balls



AERODYNAMIC SOURCES

Lighthill's theory

 Lighthill (1952) first showed that sound generated by turbulent flow was just as if the field were generated by a distribution of *quadrupole* sources.

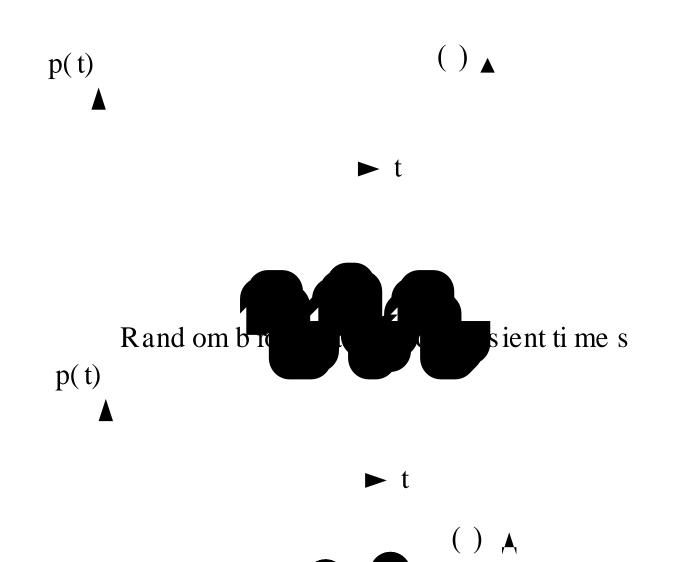
(He did this by rearranging the basic equations of fluid dynamics).

Spectral analysis

SOUND SPECTRA

Fourier's Theorem

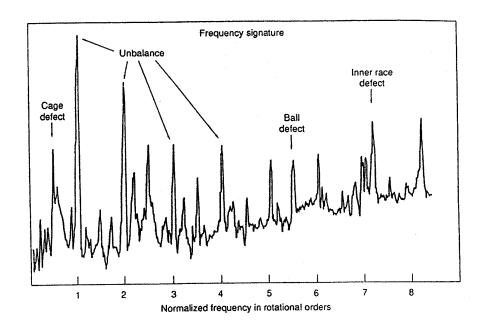
Any (pressure) time series, whether random broadband, transient or periodic, can be constructed from an infinite number of appropriately phased single frequency components (tones) of infinite duration!

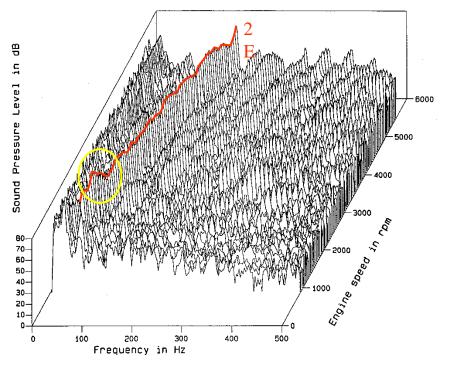

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

Reasons for performing spectra

- The auditory system sensitivity varies with frequency
- Noise control performance varies with frequency
- Mathematical and numerical prediction of sound field is much easier at a single frequency (sound field in cars, for example. The broadband and transient behaviour of the sound field can then be predicted by Fourier synthesis of the single frequency sound fields.

TYPES OF SPECTRA


Repetat ive ti me seri es



EXAMPLE SPECTRA

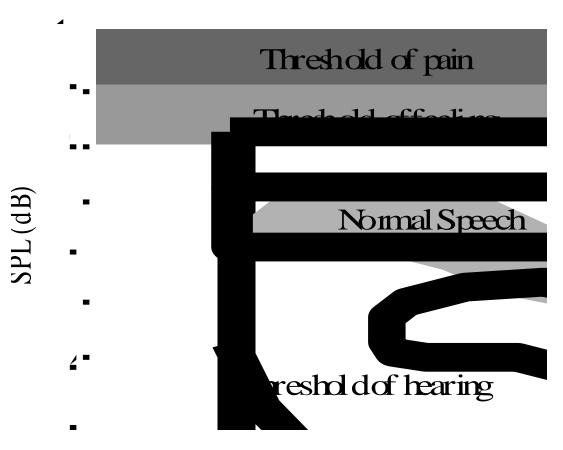
mechanical signature of a ball bearing race

waterfall plot - car A

STANDARD FREQUENCY BANDS

Narrow band frequency analysis is useful for revealing the details in the spectrum, such as the presence of discrete frequency tones in a broadband noise floor. Often, however, a representation of the spectrum in course, fairly large frequency bands is sufficient.

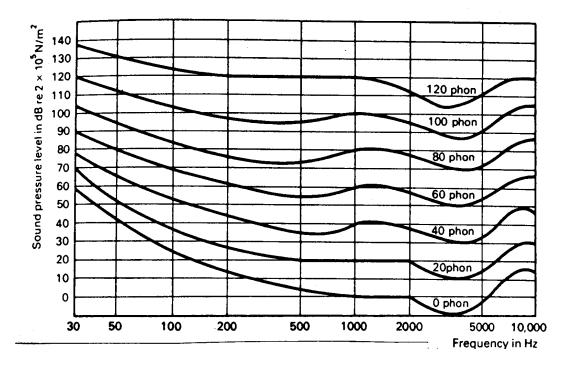
The most usual frequency bands are one-third or whole octave bands. Their lower, centre and upper band limits are given below.


Band	Lower Band Limit	Octave			One-Third Octave	:
			Upper Band Limit	Lower Band Limit	Center	Upper Band Limit
12	11	16	22	14.1	16	17.8
13			•	17.8	20	22.4
14				22.4	25	28.2
15	22	31.5	44	28.2	31.5	35.5
16				35.5	40	44.7
17				44.7	50	56.2
18	44	63	88	56.2	63	70.8
19				70.8	80	89.1
20				89.1	100	112
21	88	125	177	112	125	141
22				141	160	178
23				178	200	224
24	177	250	355	224	250	282
25				282	315	355
26				355	400	447
27	355	500	710	447	500	562
28				562	630	708
29				708	800	891
30	710	1,000	1,420	891	1.000	1,122
31				1,122	1,250	1,413
32				1,413	1.600	1,778
33	1,420	2,000	2,840	1,778	2,000	2,239
34				2,239	2.500	2,818
35				2,818	3,150	3,548
36	2,840	4,000	5,680	3,548	4.000	4,467
37				4,467	5.000	5,623
38				5,623	6,300	7,079
39	5,680	8,000	11,360	7,079	8,000	8,913
40				8,913	10.000	11,220
41				11,220	12,500	14,130
42	11,360	16,000	22,720	14,130	16.000	17,780
43				17,780	20,000	22,390

THE HUMAN AUDITORY RESPONSE

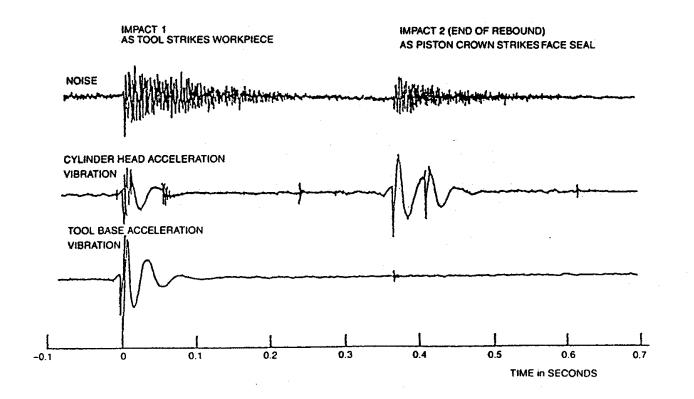
The range of sound pressure level frequency that the human ear can perceive is vast.

This figure is for a healthy normal adult. Hearing worsens with:


- Old-age (Presbycusis)
- long term exposure to loud noise levels
- Illness conductive deafness, Nerve deafness and cortical (brain) deafness

SUBJECTIVE NOISE MEASURES A - WEIGHTING - (dBA)

The sensitivity of the ear varies with frequency. The commonest 'weighting' (or correction) scale for incorporating this subjective sensitivity, which approximates the inverse of the human equal loudness curves, is the A - weighted sound level L_A expressed in dBA (or dB(A)).


Centre frequency	Correction (dB)
31.5	-39.4
63	-26.2
125	-16.1
250	-8.6
500	-3.2
1000	0
2000	1.2
4000	1.0
8000	-1.1

(the phon is dB measure of perceived loudness)

TIME DEPENDENCE OF SOUND SIGNALS

Frequency analysis is very useful. But it may obscure the nature of the noise-generating mechanisms. As part of diagnostic tests it is often instructive to study the time-histories of radiated sound pressure or intensity. It can also be helpful to slow down a recording of the noise of a source so that the listener can more readily identify individual events.

DIRECTIVITY GEOMETRIC SPREADING

For a *point* monopole source

$$\overline{p^2} \approx \rho c I = \frac{\rho c W}{S} = \frac{\rho c W}{4\pi r^2}$$

i.e. $L_p \sim -20 \log_{10} r$ or -6 dB per doubling of distance

For a *line* monopole source

$$\overline{p^2} \approx \rho c I$$

i.e. $L_p \sim -10 \log_{10} r$ or -3 dB per doubling of distance

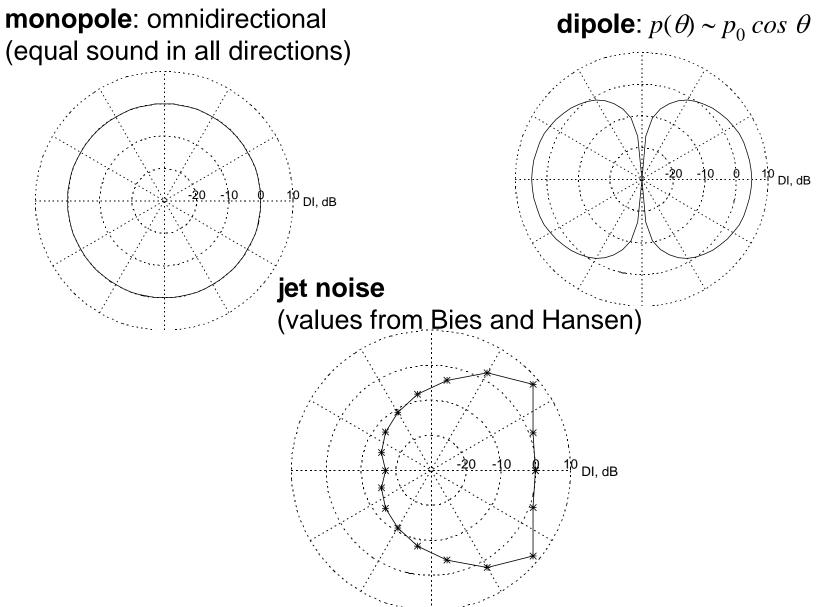
DIRECTIVITY FAR FIELD VARIATION

In the far field the sound field can be approximated as having

- a dependence on distance,
- a separate dependence on direction D_{θ} .

For a (point) source in free field, at a distance r from the source, write the mean intensity as W

$$\langle I \rangle = \frac{W}{4\pi r^2}$$


Then the directivity factor D_{θ} is defined as the ratio of intensity in the direction (θ, ψ) to the mean intensity:

$$D_{\theta} = I_{\theta} / \langle I \rangle$$

and the directivity index as $DI = 10 \log_{10} D_{\theta}$

$$I_{\theta} = \langle I \rangle D_{\theta} = \frac{WD_{\theta}}{4\pi r^2} \qquad L_{p} \approx L_{I} = L_{W} - 20 \log_{10} r - 11 + DI$$

DIRECTIVITY - EXAMPLES

