The Structural Health Monitoring Process

1. Operational evaluation
2. Data acquisition & networking
 - Sensors
 - Data collection
 - Data management
3. Feature selection & extraction
4. Probabilistic decision making
Presentation Outline

• Introduction
• **Hardware design of wireless sensors:**
 – Commercial and academic units
• **Embedded firmware:**
 – Operation and data interrogation
• **Field applications:**
 – Long-span bridges and buildings
• **Future directions and technology trends**

Structural Monitoring Systems

• **Structures can be instrumented with monitoring systems:**
 – Empirical response data to seismic and wind loads
 – Model calibration using response data is a typical application
 – Detection of excessive responses
• **Structural monitoring ≠ structural health monitoring:**
 – Very few structural “health” monitoring systems in practical use
 – Automated processing of data for damage identification

- Tsing Ma Bridge, HK (+300 channels)
- Pacoima Dam, CA (20 channels)
- Turbines contain multiple sensors
Current State of Practice

- **Characteristics of structural monitoring systems:**
 - Centralized architectures with data stored in a signal data repository
 - Sensors are “wired” to a central processing unit using shielded wiring:
 - Dedicated and reliable communication channel
 - Wiring drives installation cost high – few thousand dollars per channel
 - Cost promotes adoption of low sensor densities

Introduction of Wireless Telemetry

- **First proposed by Straser and Kiremidjian in the mid-1990’s:**
 - Eradicate the need for wiring in order to reduce costs
- **Three major innovations associated with wireless sensors:**
 - Indeed a low-cost option which in turn drives sensing density
 - Wireless communications allows for ad-hoc communications
 - Includes computing resources for sensor-based interrogation
Presentation Outline

- Introduction
- **Hardware design of wireless sensors:**
 - Commercial and academic units
- **Embedded firmware:**
 - Operation and data interrogation
- **Field applications:**
 - Long-span bridges and buildings
- **Future directions and technology trends**

Anatomy of a Wireless Sensor

Sensing Interface
- Sensor transparency offered by internal ADC:
 - Multi-channel
 - High-resolution
- To sample data, require local clocking
- Synchronization challenging between independent ADCs in the network

Computational Core
- Consists of microprocessor & memory
 - Packetize data for modulation on the wireless channel
- Today, the computational core is the wireless sensor’s most important and powerful functional feature:
 - Locally buffer measurement data
 - Empowers sensors to process data

Wireless Modem
- Important element in the design as it eliminates wiring
- Requires digital data formats:
 - ADC & microcontroller are required at the node
- Major consumer of power
- Limited bandwidth
General Wireless Sensor Families

<table>
<thead>
<tr>
<th>Academic wireless sensor prototypes</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UC Berkeley "Mote" wireless sensor family commercialized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other commercial wireless sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los Alamos Dynamics Structural Dynamics and Mechanical Vibration Consultants

Navigation of WSN Families

- **Commercial wireless sensors:**
 - Ready to run right out of the box
 - Large user base whose collective experience can be leveraged
 - Generic wireless sensing solutions not tailored to any one application:
 - Typically low data resolution (8 to 12-bits)
 - Short communication ranges (50 m)

- **Academic wireless sensor prototypes:**
 - As engineers, can prescribe system functionality desired:
 - High resolution data collection (at least 16-bits)
 - Communication range can be scaled to system dimensions (100’s m)
 - Necessitates understanding of electronics and embedded systems
 - Most typically a slow evolutionary process
 - Stand-alone system difficult to integrate with other WSN families
MEMSIC MoteZ

- **Very popular commercial wireless sensor platform:**
 - Widely used by the academic SHM community
 - Mature-generation platform based on the Berkeley Mote family
 - Based on the Atmel ATmega microcontroller product line
 - Low cost and comes with complete mesh networking capabilities
 - Operating system utilized to operate device is TinyOS (open-source)
 - Difficult operating system to learn and implement properly

<table>
<thead>
<tr>
<th>Performance Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution: 10-bit</td>
</tr>
<tr>
<td>Communication: IEEE 802.15.4 (Zigbee)</td>
</tr>
<tr>
<td>Energy Source: 2 AA Batteries</td>
</tr>
<tr>
<td>Power: 20 mA @ 3V</td>
</tr>
<tr>
<td>Range: 20 m</td>
</tr>
<tr>
<td>Data Rate: 250 kps</td>
</tr>
<tr>
<td>Sample Rate: 100 kHz</td>
</tr>
</tbody>
</table>

MEMSIC iMote2

- **State-of-the-art commercial wireless sensor platform:**
 - Jointly developed between Intel and Crossbow
 - Features richer computational capabilities:
 - Based on the Intel XScale microprocessor family (marketed by Marvell)
 - Comes with communication (IEEE 802.15.4) and processor:
 - Sensor interface board is not included
 - Phasing out in 2011 (to be replaced by iMote3 in 2012)

<table>
<thead>
<tr>
<th>Performance Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory: 256kB SRAM, 32MB Flash, 32MB SDRAM</td>
</tr>
<tr>
<td>Processor: XScale PXA271 (with DSP coprocessor)</td>
</tr>
<tr>
<td>Energy Source: 3 AAA Batteries</td>
</tr>
<tr>
<td>Power: 60 mA (@ 3V)</td>
</tr>
<tr>
<td>Range: 30 m</td>
</tr>
<tr>
<td>Data Rate: 250 kps</td>
</tr>
<tr>
<td>Data Collection: No ADC on-board – requires sensor board</td>
</tr>
</tbody>
</table>
Sensor Boards for iMotes

- **Intel standard sensor board available:**
 - Low ADC resolution of 12-bits

- **Illinois SHM-A sensor board:**
 - Custom designed sensor board for high resolution SHM applications
 - 3-axis MEMS accelerometer with 16-bit resolution (via over-sampling)
 - Built-in variable amplification circuitry (Analog Devices 628)

Microstrain G-Link

- **Proprietary commercial wireless sensor platform:**
 - Internal MEMS accelerometers (2 or 10g versions with 10 mg noise floors)
 - IEEE802.15.4 wireless communications on 2.4 GHz
 - Complete wireless system solution offered:
 - Transmitters, receivers, loggers, among other system components
 - Lack of access to embedded software within the wireless sensor node

<table>
<thead>
<tr>
<th>Performance Specification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>2 MB</td>
</tr>
<tr>
<td>ADC Resolution</td>
<td>12-bit</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>2 kHz</td>
</tr>
<tr>
<td>Energy Source</td>
<td>Internal Li-ion rechargable battery</td>
</tr>
<tr>
<td>Power</td>
<td>25 mA (@ 3 V)</td>
</tr>
<tr>
<td>Range</td>
<td>70 m</td>
</tr>
<tr>
<td>Data Rate</td>
<td>250 kps</td>
</tr>
<tr>
<td>Sensor</td>
<td>Internal accelerometer (10 mg resolution)</td>
</tr>
</tbody>
</table>

National Instruments WSN

- **First data acquisition company to invest in wireless sensors:**
 - Wireless capabilities for the CompactRIO system
 - Stand-alone base-station also possible
 - Programmable wireless sensor nodes via LabVIEW
- **Slowly building diverse module family:**
 - General purpose analog inputs, strain gages and thermocouples

<table>
<thead>
<tr>
<th>Performance Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Memory</td>
</tr>
<tr>
<td>ADC Resolution</td>
</tr>
<tr>
<td>Sample Rate</td>
</tr>
<tr>
<td>Energy Source</td>
</tr>
<tr>
<td>Power</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Data Rate</td>
</tr>
<tr>
<td>Sensor</td>
</tr>
</tbody>
</table>

Los Alamos Dynamics Structural Dynamics and Mechanical Vibration Consultants

WiMMS Sensor (Stanford)

- **Designed for structural monitoring explicitly:**
 - 16-bit ADC with 4 channels to which any sensor can be attached
 - 0-5V sensor voltage range
 - Swappable radio to offer a flexible interface to the wireless channel:
 - MaxStream Xcite – 900 MHz with 300 m LOS range
 - MaxStream Xstream – 2.4 GHz with 1 km LOS range

<table>
<thead>
<tr>
<th>Performance Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
</tr>
<tr>
<td>Form Factor</td>
</tr>
<tr>
<td>Energy Source</td>
</tr>
<tr>
<td>Power</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Data Rate</td>
</tr>
<tr>
<td>Sample Rate</td>
</tr>
</tbody>
</table>

Los Alamos Dynamics Structural Dynamics and Mechanical Vibration Consultants
Narada (Michigan)

- Redesign of the Stanford WiMMS wireless sensor node:
 - 4-layer printed circuit board design to achieve true 16-bit resolution
 - 2-channel 12-bit DAC interface for actuation control
 - Designed to incorporate IEEE802.15.4 radio (Chipcon 2420):
 - 2.4 GHz radio with a 250 kbps rate and 70 m range
 - Swappable radio to accommodate a radio with power amplification:
 - Power amplifier provides 10 dBm gain to give 700 m range

<table>
<thead>
<tr>
<th>Performance Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
</tr>
<tr>
<td>Form Factor</td>
</tr>
<tr>
<td>Energy Source</td>
</tr>
<tr>
<td>Power</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>Data Rate</td>
</tr>
<tr>
<td>Sample Rate</td>
</tr>
</tbody>
</table>

WiDAQ (Los Alamos)

- WID3 module offers processing and radio capability:
 - Zigbee communications (using a Zigbit transceiver)

- The wireless data acquisition (WiDAQ) module:
 - Designed to integrate with the WID3
 - Offers 4 conventional A/D channels
 - Offers 1 D/A channel for passive and active sensing
Wireless Impedance Device (Los Alamos)

- **Wireless sensor node optimized for impedance-based SHM:**
 - Built around the AD5933 impedance measurement solution:
 - Frequency Range: 1 to 100 kHz
 - Impedance Range: 10W to 10MW
 - 7 piezoelectric sensors per node
 - Low Power (< 60 mW)
 - 8 Mb flash memory for data storage

Word of Caution

- **Data sheets can be difficult to read for novice users:**
 - Inability to truly read the datasheet can lead to poor choices

- **Power is a significant limitation of wireless sensors:**
 - The laws of physics are in play – hence, there is no free lunch!
 - Larger communication range mean higher power ($P \propto R^2$)
 - Higher data rates means higher power ($P \propto f$)
 - Faster processors mean higher power ($P \propto f$)
 - More memory means higher power ($P \propto S$)

- **Energy consumed is a function of:**
 - Time the unit is “active” times the active power
 - Time the unit is “sleeping” times the sleep power
 - Usage is ultimately the final determinant of required energy source
Presentation Outline

- Introduction
- Hardware design of wireless sensors:
 - Commercial and academic units
- Embedded firmware:
 - Operation and data interrogation
- Field applications:
 - Long-span bridges and buildings
- Future directions and technology trends

Overview of Firmware

- **Software embedded in wireless sensors is firmware:**
 - Software usually written in a high-level programming language (C)
 - In-line assembly written for speed and low-latency computations
 - Includes operating system, middleware and applications

Application Software

Middleware

Operating System

Hardware/Devices

Data processing associated with system ID, control and health monitoring

Takes care of general node and network operation (e.g., mesh networking), time synchronization, etc.

Hides implementation details from upper layers and manages memory

Physical hardware running the system including radio and ADC
Robust Operating System Options

- Real-time operating system (RTOS) will offer:
 - Deterministic timing of embedded system operations (very important)
 - Multitasking kernel design for concurrent thread execution
 - Abstract device details away from user
- Open-source RTOS options for small microcontrollers:
 - FreeRTOS (http://www.freertos.org)
 - uCOS (http://www.micrium.com)
- Commercial RTOS options:
 - Wind River VxWorks
 - Many more

TinyOS

- Berkeley mote family utilizes TinyOS for its operation:
 - Open-source operating system for mesh networked wireless sensors
 - Written in "nesC", a high-level programming extension to standard C
 - Component-based programming abstraction
 - Strong correlation to object-based abstractions
- Two-generations of TinyOS:
 - TinyOS 1.0 is the first mainstream version widely used up to 2008:
 - Core element of the OS is its handling of mesh networking
 - TinyOS 2.0 is a complete redesign to gain speed and efficiency:
 - Not backward compatible with Tiny OS 1.0
- Commercial uses of TinyOS have been limited:
 - Can not achieve a deterministic timing of tasks making it unreliable for embedded system chores requiring precise timing
Middleware

- Middleware begins to customize wireless sensor node for its operation in a network of wireless sensors:
 - Networking topologies (star versus mesh)
 - Timing and synchronization

Star Topology

Multi-hop (Peer-to-peer) Topology

Star Networks

- Direct data transmission (star topologies) commonly used:
 - Use a lot of energy upfront with high power at transmitter
 - Power in signal inversely proportional to distance
 - Receive as long as signal power is greater than receive sensitivity
 - More energy consumed ……. but offers superior reliability

$$P_r(d) = \frac{G_t G_r \lambda^2}{(4\pi)^2 d^2 L} P_t$$

- Power, P_r
- Range, R
- Receiver Sensitivity
Mesh Networks

- **Multi-hop transmission can be used as well:**
 - Multiple short range hops give network overall range
 - Multi-hopping requires significant overhead that erodes at speed
 - Theoretically more energy-efficient … but in actuality it may not be:
 - If one hop is 95% reliable, then multi-hop reliability is 0.95^n
 - 6-hop example below, 75% reliable likely requiring resends!

\[P_i(d) = \frac{G_i G_e \lambda^2}{(4\pi)^2 x L} P_i \]

<table>
<thead>
<tr>
<th>Power, (P)</th>
<th>Range, (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver Sensitivity</td>
<td></td>
</tr>
</tbody>
</table>

Time Synchronization

- **An inherent challenge with wireless sensors is timing:**
 - Clock drift (sensor-specific problem)
 - Time synchronization (network-specific problem)
- **Clock drift is the result of low-cost crystals on the node:**
 - Piezoelectric oscillation in a crystal used to keep track of time
 - Oscillation varies and is a function of environment (e.g., temperature)
 \[f = f_{nom} \left[1 - 0.04 \text{ ppm}(T - T_{nom})^2 \right] \]
 - High quality crystals drift less (lower ppm drift characteristics)
 - Thermally corrected crystals (but these require battery power!)
Network Synchronization

- **Node-to-node synchronization can be resolved:**
 - Many delay sources that are deterministic and stochastic

<table>
<thead>
<tr>
<th>Time</th>
<th>Magnitude</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send and Receive</td>
<td>0 - 100 ms</td>
<td>1) adeterministic, depends on the processor load</td>
</tr>
<tr>
<td>Access</td>
<td>10 - 500 ms</td>
<td>2) deterministic, depends on the channel contention</td>
</tr>
<tr>
<td>Transmission / Reception</td>
<td>10 - 20 ms</td>
<td>3) deterministic, depends on message length</td>
</tr>
<tr>
<td>Propagation</td>
<td>< 100 ms for distances up to 500 meters</td>
<td>4) deterministic, depends on the distance between sender and receiver</td>
</tr>
<tr>
<td>Interrupt Handling</td>
<td>< 500 ms in most cases, but it can be up to 700 ms</td>
<td>5) deterministic, can be calculated</td>
</tr>
<tr>
<td>Encoding</td>
<td>100 - 2000</td>
<td>6) Deterministic, depends on radio channel and settings</td>
</tr>
<tr>
<td>Byte Alignment</td>
<td>0 - 800</td>
<td>7) Deterministic, can be calculated</td>
</tr>
</tbody>
</table>

Source: Maróti et al. (2004)

Synchronization Strategies

- **Beacon-based synchronization:**
 - Have nodes locally reset their clocks at the same time
 - Ignore the delays inherent to the beacon send-receive process
 - Easy but lower time synchronization accuracies (< 1 ms)

- **Baseline deterministic and stochastic delays:**
 - Packet communication used to baseline network delays
 - Identify deterministic and stochastic delays
 - Correct for delays when resetting the local clocks
 - More overhead due to multiple packets but great accuracy (< 10 us)
 - Flooding time synchronization protocol (FTSP):
 - Maróti et al. (2004) [Vanderbuilt]
Application Software

- **Embedded firmware allows applications to be created:**
 - With data collected and stored, time to process
 - While computing is possible there are many limitations:
 - Time, memory, and energy

 ![Diagram of Application Software, Middleware, Operating System, and Hardware/Devices]
 - **Application Software**
 - Data processing associated with system ID, control and health monitoring
 - **Middleware**
 - Takes care of general node and network operation (e.g., mesh networking), time synchronization, etc.
 - **Operating System**
 - Hides implementation details from upper layers and manages memory
 - **Hardware/Devices**
 - Physical hardware running the system including radio and ADC

Local Data Processing at the Node

- **Local data processing capability is a major paradigm shift:**
 - **System scalability**: streaming raw data is not scalable since it would exhaust bandwidth leading to eroded wireless performance
 - **Power reductions**: communication is more power-intensive which is a critical issue for battery powered nodes
 - **Efficient data management**: avoidance of data inundation at the central repository
Unique Computing Platform

- **WSN represent a very unique computing platform:**
 - Small memory and computing footprint at each sensor node
 - But significant memory and data processing ability within the network
 - Can share data between computing nodes via the wireless channel
 - To preserve battery energy and channel quality, minimize channel use

- **Sensor-based versus network-based computing**

Realization-based System Identification

- **Consider simple illustration of embedded computing:**
 - Realization-based subspace system identification
Implementation Details

- **Sensor-level computing:**
 - Parallel MP estimations in each sensor node by μ-MPID algorithm
 - Treating system as a single input-single output (SISO) system

- **Network-level computing:**
 - Model estimation in the server by Ho & Kalman algorithm

Sensor-based Computations

- **μ-Markov parameterization (Van Pelt & Bernstein 1998):**

 - SISO ARMA model

 \[
 y(k) = \sum_{j=1}^{\mu} a_j y(k-j) + \sum_{j=0}^{\mu} b_j u(k-j) = -\sum_{j=1}^{\mu} a_j y(k-j) + b_0 u(0) + \sum_{j=1}^{\mu} b_j u(k-j)
 \]

 μ times substitutions of time-delayed ARMA model

 \[
 y(k) = -\sum_{j=1}^{\mu} a_j y(k-j+1) + \sum_{j=0}^{\mu} b_j u(k-j) + \sum_{j=1}^{\mu} b_j u(k-j+1)
 \]

 - MP estimation by lease square method:

 \[
 y = \Phi \theta + \epsilon
 \]

 \[
 \hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T y
 \]

 - Least square solution

 \[
 \hat{\theta} = \begin{bmatrix} \hat{a}_1 \\ \vdots \\ \hat{a}_n \\
 \hat{b}_0 \\ \vdots \\ \hat{b}_1 \\
 \end{bmatrix}
 \]

 - Markov parameters
Server-based Computation

- **Ho & Kalman’s Realization Algorithm (1966):**
 - State-space model realization from MP sequences
 - Origin of realization-based subspace system identification

\[
\begin{align*}
 x(k+1) &= Ax(k) + Bu(k) \\
 y(k) &= Cx(k)
\end{align*}
\]

\[
h(k) = CA^kB
\]

Los Alamos Dynamics

Hill Auditorium

- **Hill Auditorium at University of Michigan:**
 - 42 m x 11 m cantilevered balcony (Mezzanine)
 - 15 Narada wireless nodes to measure mezzanine vibrations
 - 1 Narada used to command modal shaker to vibrate balcony
 - Base station used for ERA implementation and network coordination
Instrumentation Strategy

- Control server
- Local coordinator on modal shaker
- Wireless sensor node

Measured Balcony Response

- 20.7 kg Modal Shaker
- MEMS Accelerometer
- Acceleration response of balcony

- Chirp (3 to 15 Hz) signal
Modal Results

- In-network processed MP sequences

• Estimated system model
• Modal parameters

\[A = \Psi \Lambda \Psi^{-1} \]

- Mode 1
 - 5.62Hz
 - (0.998)
- Mode 2
 - 6.05Hz
 - (0.982)
- Mode 3
 - 6.72Hz
 - (0.995)
- Mode 4
 - 7.61Hz
 - (0.933)

Presentation Outline

- Introduction
- Hardware design of wireless sensors:
 - Commercial and academic units
- Embedded firmware:
 - Operation and data interrogation
- Field applications:
 - Long-span bridges and buildings
- Future directions and technology trends
Golden Gate Bridge (2005-2006)

- **Short-term field deployment on the Golden Gate Bridge:**
 - UC Berkeley (Pakzad et al. 2006) deployed 56 MicaZ wireless sensor nodes on the main span and 8 MicaZ on the towers
 - Measure accelerations using ADXL202 and SD1221 accelerometers
 - Pipelining approach to data delivery:
 - Collect at the same time and buffer data
 - After sampling, all stop and send one at a time
 - One sensor sends its data to its neighbor
Los Alamos Dynamics Structural Dynamics and Mechanical Vibration Consultants

Golden Gate Bridge (2005-2006)

- 6V Lantern Battery X 4
- Extreme Rust on C-clamp
- Accelerometer Board and Mote
- Zip tie around antenna
- Bi-directional Patch Antenna
- Duct Tape to Hold Wire

Jindo Bridge (2007-2011)

- **Jindo cable stay-bridge instrumentation study**
 - UIUC (Spencer), KAIST (Yun), and University of Tokyo (Nagayama)
 - 70 iMote2 nodes with SHM-A boards to measure accelerations
 - Solar cells and mico-wind turbines for power harvesting
Jindo Bridge (2007-2011)

- **Jindo cable stay-bridge instrumentation study:**
 - UIUC (Spencer), KAIST (Yun), and University of Tokyo (Nagayama)
 - 70 iMote2 nodes with SHM-A boards to measure accelerations
 - Solar cells and micro-wind turbines for power harvesting
Stork Bridge (2006 – Present)

• **Stork Bridge (Switzerland) is a permanent installation:**
 – Meyer *et al.* (2001) deploy 7 wireless sensor nodes
 – 6 nodes measure cable vibrations and 1 measures deck vibrations
 – Proprietary wireless sensor node developed at EMPA
New Carquinez Bridge (2009 – Present)

- **New Carquinez Bridge (Vallejo, CA):**
 - Total bridge length is 1056 m (main span of 728 m)
 - Main deck consists of steel orthotropic box girders
 - Hollow concrete tower legs and pre-stressed link beam

- **Permanent monitoring system installed in 2009:**
 - Kurata *et al.* (2010) describes monitoring system design

- **28 wireless sensor nodes collecting 81 channels:**
 - 19 tri-axial accelerometers measuring main deck
 - 3 tri-axial accelerometers measuring vibrations at tower top
 - Wind vane, anemometer and temperature in three locations
 - 3 string potentiometers to measure deck movement relative to tower
Packaged *Narada* Units

- Packaging for long-term deployment on NCB:
 - Water tight enclosure for all electronics
 - Magnetic mounting for quick and easy installations

Installation Details
Installation Details

- Narada node
- Narada server
Ambient Vibrations

Comparison to CSMIP Data

- **California Strong Ground Motion Instrumentation Program:**
 - NCB already has a permanent seismic monitoring system installed
 - Ideal baseline for performance evaluation
 - Past work used CSMIP data for system ID of NCB (e.g., Conte, Betti)
Cyberinfrastructure

- **What do you do with data from hundreds of channels?**
 - Sensor technology has outpaced data management tools
- **Cyberinfrastructure tools offer enormous potential:**
 - Data combined with powerful analytical tools
 - Physics- and statistics-based information discovery

Automated Mode Extraction

- **Owner of bridge (Caltrans) concerned about seismic safety:**
 - Concern is the seismic safety of the bridge during large earthquakes
 - Require high-fidelity models of bridge to simulate seismic behavior
- **Seek modal information for model updating of FEM model:**
 - Modal frequencies and mode shapes used to update ADINA model
Extracted Mode Shapes

- Estimation by Frequency Domain Decomposition (FDD) mode shape estimation algorithm:
 - Distributed implementation proposed by Zimmerman et al. (2009)
 - Excellent agreement with model updated finite element model

Presentation Outline

- Introduction
- Hardware design of wireless sensors:
 - Commercial and academic units
- Embedded firmware:
 - Operation and data interrogation
- Field applications:
 - Long-span bridges and buildings
- Future directions and technology trends
Future Directions

• **Wireless sensors are rapidly maturing:**
 – Early efforts focused on the design of wireless sensor hardware
 – Deployed to various “structures” (bridge, building and turbine)
 – Current efforts more positioned to explore in-network data processing
 – Wireless sensor platforms emerging with greater processing power

• **Integration of actuation capabilities in wireless sensors:**
 – Active sensing with PZT elements (acoustic/ultrasonic inspection):
 • Bridging between global monitoring and NDE methods
 – WSN can be leveraged to reduce the complexity of control systems:
 • Lower cost and greater flexibility in system architectures

• **Strong dependency on batteries:**
 – Other wireless sensing strategies proposed (for example, light-based)
 – Power harvesting – promising field but still in its infancy

References

• **Literature review of the state-of-art:**

• **Case studies:**