USO DE LODO DE ESGOTO NA REESTRUTURAÇÃO DE UM LATOSSOLO VERMELHO DEGRADADO

FABIANA DA SILVA DE CAMPOS
Engenheira Agrônoma

Profª. Drª. MARLENE CRISTINA ALVES
Orientadora

Dissertação apresentada à Faculdade de Engenharia da Universidade Estadual Paulista, Campus de Ilha Solteira, para a obtenção de Título de Mestre em Agronomia, Área de Concentração em Sistemas de Produção.

ILHA SOLTEIRA - SP
Setembro – 2006
Ofereço

À Deus pela presença constante em minha vida, auxiliando e amparando nessa longa caminhada para a realização de mais um sonho.

Aos meus queridos

Pais, Ilton e Ivonete pelo amor compartilhado, companheirismo, confiança, cuidado e fé depositada em mim para mais uma realização de nossos sonhos.

Às minhas irmãs Ana Paula e Alessandra, pelo apoio, amizade, amor e carinho e cumplicidade dedicados ao longo de minha vida.

Ao vovô Carlinho (in memoriam) pelos cuidados, incentivo, amor e amizade dedicado a mim e toda a minha família.

Dedico
AGRADECIMENTOS

À Profª. Drª. Marlene Cristina Alves, pela orientação, amizade, incentivo, confiança e dedicação compartilhada por todos esses anos.
À Capes pelo incentivo por meio da concessão de bolsa de estudo.
Ao técnico de campo, Sr. Valdivino dos Santos pela amizade, companheirismo e auxílio dedicado ao longo desses anos.
À todos os docentes desta unidade que contribuíram para minha formação profissional.
Aos funcionários Angela e Domingos, da Secretária do Departamento de Fitossanidade, Engenharia Rural e Solos.
Aos funcionários da Biblioteca e Seção de Pós-graduação da FE, Ilha Solteira, Unesp.
Aos meus amigos de pós-graduação: Ronaldo, Flávio, Marco Antônio, Elaine e em especial minha irmã, pela amizade, auxílio e incentivo dedicados para a conclusão de mais uma etapa de minha vida.
Aos professores Pedro César dos Santos e Gener Tadeu Pereira, pelas orientações estatísticas.
Enfim, à todos que contribuíram para a realização de mais um sonho, meus sinceros agradecimentos.
<table>
<thead>
<tr>
<th>ÍNDICE</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTA DE TABELAS</td>
<td>6</td>
</tr>
<tr>
<td>LISTA DE FIGURAS</td>
<td>8</td>
</tr>
<tr>
<td>RESUMO</td>
<td>9</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>11</td>
</tr>
<tr>
<td>1. INTRODUÇÃO</td>
<td>13</td>
</tr>
<tr>
<td>2. REVISÃO DE LITERATURA</td>
<td>15</td>
</tr>
<tr>
<td>2.1- Degradação dos solos</td>
<td>15</td>
</tr>
<tr>
<td>2.2- Recuperação dos solos</td>
<td>17</td>
</tr>
<tr>
<td>2.3- Composição do lodo de esgoto</td>
<td>19</td>
</tr>
<tr>
<td>2.4- Riscos ambientais causados pelo lodo de esgoto</td>
<td>21</td>
</tr>
<tr>
<td>2.5- Uso do lodo de esgoto em plantações florestais</td>
<td>25</td>
</tr>
<tr>
<td>2.6- Influência do lodo de esgoto nas propriedades físico-hídricas do solo</td>
<td>26</td>
</tr>
<tr>
<td>2.7- Influência do lodo de esgoto nas propriedades químicas do solo</td>
<td>29</td>
</tr>
<tr>
<td>2.8- A cultura de eucalipto</td>
<td>31</td>
</tr>
<tr>
<td>2.9- A cultura de braquiária</td>
<td>33</td>
</tr>
<tr>
<td>3. MATERIAL E MÉTODOS</td>
<td>36</td>
</tr>
<tr>
<td>3.1- Localização e caracterização da área experimental</td>
<td>36</td>
</tr>
<tr>
<td>3.2- Delineamento experimental e tratamentos</td>
<td>39</td>
</tr>
<tr>
<td>3.3- Implantação do experimento</td>
<td>42</td>
</tr>
<tr>
<td>3.4- Caracterização do lodo de esgoto</td>
<td>45</td>
</tr>
<tr>
<td>3.4.1- Origem do lodo de esgoto</td>
<td>45</td>
</tr>
<tr>
<td>3.4.2- Análise química do lodo de esgoto utilizado</td>
<td>46</td>
</tr>
<tr>
<td>3.4.3- Análise microbiológica do lodo de esgoto</td>
<td>46</td>
</tr>
</tbody>
</table>
LISTA DE TABELAS

Tabelas	Páginas
01. Composição geral do lodo de esgoto | 21
02. Valores de porosidade total, macroporosidade, microporosidade e densidade do solo degradado antes do preparo de solo, em dezembro de 2002 | 42
03. Distribuição de tamanho de partículas primárias do solo estudado | 42
04. Características químicas do solo degradado antes do preparo, em dezembro de 2002 | 43
05. Resultados das análises químicas do lodo de esgoto utilizado | 46
06. Resultado da análise dos diferentes parasitas | 48
07. Análise química do lodo de esgoto da ETE Araçatuba-SP, para fins de toxidade. Ensaio de Lixiviação | 49
08. Teste de significância para os contrastes entre os tratamentos referentes às propriedades físico-hídricas do solo, para as camadas de 0,00-0,05 m e de 0,05-0,10 m | 55
09. Valores médios de diâmetro médio ponderado (DMP) de agregados estáveis em água para os tratamentos estudados nas camadas de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m | 56
10. Valores médios de teor de água do solo (m³ m⁻³) retido às tensões de 50, 100 e 200 kPa para os tratamentos estudados nas camadas de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m | 57
11. Valores médios de macroporosidade e microporosidade para os tratamentos estudados nas camadas de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m | 59
12. Valores médios de porosidade total e densidade do solo para os tratamentos estudados nas camadas de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m... 60

13. Teste de significância para os contrastes entre os tratamentos referentes às propriedades físico-hídricas do solo, para as camadas de 0,10-0,20 m e 0,20-0,30 m.. 65

14. Teste de significância para os contrastes entre os tratamentos referentes ao movimento da água no solo... 68

15. Valores médios da infiltração acumulada (IA) e taxa constante de infiltração (TCI) para os tratamentos estudados... 69

16. Teste de significância para os contrastes entre os tratamentos referentes às propriedades químicas do solo, para as camadas de 0,00-0,05 m e de 0,05-0,10 m.. 71

17. Valores médios de P, M.O., pH, K, Ca, Mg, H+Al, Al, SB, CTC e V %, para os tratamentos estudados nas camadas de 0,00-0,05 e 0,05-0,10 m.............. 72

18. Teste de significância para os contrastes entre os tratamentos referentes às propriedades químicas do solo, para as camadas de 0,10-0,20 m e de 0,20-0,30 m... 78

19. Valores médios de P, M.O., pH, K, Ca, Mg, H+Al, Al, SB, CTC e V %, para os tratamentos estudados nas camadas de 0,10-0,20 e 0,20-0,30 m....... 79

20. Rendimento de massa verde e seca da braquiária avaliada 2,5 anos após a semeadura... 82

21. Valores médios para altura e diâmetro do caule das plantas de eucalipto avaliadas 2,5 anos após o plantio... 83
LISTA DE FIGURAS

<table>
<thead>
<tr>
<th>Figuras</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>01. Imagem de satélite mostrando a localização da área experimental</td>
<td>36</td>
</tr>
<tr>
<td>02. Valores da precipitação, temperatura média e umidade relativa do ar, em cada mês do período em que o experimento foi conduzido</td>
<td>37</td>
</tr>
<tr>
<td>03. Vista geral do solo decapitado na área experimental</td>
<td>38</td>
</tr>
<tr>
<td>04. Vista geral do local da área experimental em novembro de 2002</td>
<td>38</td>
</tr>
<tr>
<td>05. Vista geral da área com vegetação natural de cerrado (T1)</td>
<td>40</td>
</tr>
<tr>
<td>06. Vista geral da área com solo exposto (T2)</td>
<td>40</td>
</tr>
<tr>
<td>07. Vista geral da área experimental em maio de 2005</td>
<td>40</td>
</tr>
<tr>
<td>08. Vista geral da área experimental em maio de 2006</td>
<td>41</td>
</tr>
<tr>
<td>09. Vista geral do lodo espalhado na superfície do solo</td>
<td>44</td>
</tr>
<tr>
<td>10. Vista geral da superfície do solo após a incorporação do lodo com enxada rotativa</td>
<td>44</td>
</tr>
<tr>
<td>11. Vista da Estação de tratamento de Esgoto de Araçatuba</td>
<td>45</td>
</tr>
</tbody>
</table>
USO DE LODO DE ESGOTO NA REESTRUTURAÇÃO DE UM LATOSSOLO VERMELHO DEGRADADO

Autora: Fabiana da Silva de Campos
Orientadora: Profª. Drª. Marlene Cristina Alves

RESUMO

O uso do solo nem sempre dá lugar a um novo sistema ecológico sustentável, seja de lavouras ou de pastagens. Com isso, solos utilizados intensamente e de forma inadequada, são levados à degradação. Neste sentido o presente trabalho teve como objetivo estudar a influência do lodo de esgoto na recuperação de propriedades físico-hídricas e químicas de um Latossolo Vermelho degradado, que está sendo cultivado há 3 anos com eucalipto (*Eucalyptus citriodora* Hook) e braquiária (*Brachiaria decumbens*), no município de Selvíria, MS. O delineamento experimental utilizado foi em blocos casualizados com 6 tratamentos e 4 repetições. Os tratamentos utilizados foram: 1-vegetação de cerrado; 2- solo exposto sem tratamento para recuperação; 3- solo cultivado com eucalipto e braquiária sem uso do lodo de esgoto e adubação mineral; 4- solo cultivado com eucalipto e braquiária com adubação mineral; 5- solo cultivado com eucalipto e braquiária com uso de 30 Mg ha\(^{-1}\) de lodo de esgoto e 6- solo cultivado com eucalipto e braquiária com uso de 60 Mg ha\(^{-1}\) de lodo de esgoto. Nas camadas do solo de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m foram estudadas as propriedades físico-hídricas: macroporosidade; microporosidade; porosidade do solo; densidade do solo; densidade de partículas; textura; estabilidade de agregados em água; retenção de água e infiltração de água no solo. Também se estudou as propriedades químicas do solo: P, K, Ca, Mg, M.O., pH, CTC, H+Al, Al, SB e V%. Para a braquiária foram avaliadas as massas verde e seca e para o eucalipto a altura média de planta e o DAP
(Diâmetro a altura do peito). Concluiu-se que: o solo estudado está sendo recuperado, porém os tratamentos para recuperação estão agindo de forma semelhante entre si; o lodo de esgoto influenciou as propriedades físico-hídricas do solo estudadas; a densidade do solo e porosidade total foram melhores indicadores da recuperação do solo; as propriedades químicas foram influenciadas com o uso do lodo de esgoto; o uso de lodo de esgoto proporcionou maior rendimento de massas verde e seca da braquiária e, promoveu maior desenvolvimento das plantas de eucalipto.

Palavras-chave: matéria orgânica; degradação do solo; recuperação do solo; eucalipto; brachiaria.
SEWAGE SLUDGE USE ON RESTRUCTURING OF A DEGRADED OXISOL

Author: Fabiana da Silva de Campos
Advisor: Profª. Drª. Marlene Cristina Alves

SUMMARY

The soil management on it not always keep on sustainability of this ecological system, be of annual crops or pastures. Thus, soils used intensely and in an inadequate way, they are carried to degradation. In this sense, the present work had as objective to study the influence of sewage sludge on recovering of physical-hydric properties and chemistry properties of a degraded Oxisol, cultivated by three years with eucalyptus (Eucalyptus citriodora Hook) and pasture (Brachiaria decumbens), in Selvíria, MS, Brazil. The experimental design was a randomized blocks with 6 treatments and 4 repetitions. The used treatments were: 1- Savannah; 2- exposed soil without treatment for recovering; 3- soil cultivated with eucalyptus and pasture without use of sewage sludge and mineral fertilization; 4- soil cultivated with eucalyptus and pasture with mineral fertilization; 5- soil cultivated with eucalyptus and pasture with use of 30 Mg ha\(^{-1}\) of sewage sludge, and 6- soil cultivated with eucalyptus and pasture with use of 60 Mg ha\(^{-1}\) of sewage sludge. On soil layers of 0.00-0.05; 0.05-0.10; 0.10-0.20 and of 0.20-0.30 m, were studied the physical-hydric properties: macroporosity; microporosity; soil porosity, bulk density, density of particles, texture, stability of aggregates in water, retention and rate infiltration of water in soil. The chemical soil properties studied were: P, K, Ca, Mg, O.M., pH, CTC, H+Al, Al, SB and V %. On pasture was evaluated the green and dry mass and on eucalyptus the medium height and diameter of stem. It was concluded the soil studied is being recovered; however, the treatments for recovering are acting in a similar way; the sewage sludge influenced the physical-hydric properties of the soil; the soil bulk density and total
porosity were better indicators of the soil recovery; the chemical properties were influenced
with the use of sewage sludge; the use of sewage sludge provided larger green and dry mass
production to pasture and, it promoted larger development of eucalyptus plants.

Key-words: organic matter; soil degradation; soil recovery; eucalyptus; pasture.
1. INTRODUÇÃO

A crescente população dos centros urbanos é uma importante produtora de diversos resíduos, os quais muitas vezes são acumulados no ambiente sem o adequado tratamento ou utilização que possibilite sua reciclagem. O tratamento desses efluentes urbanos e industriais resulta um resíduo sólido denominado lodo de esgoto. Este resíduo pode ser aproveitado na agricultura e no meio florestal.

O uso do lodo de esgoto como adubo orgânico na recuperação de solos degradados é considerado hoje como a alternativa mais promissora de disposição final desse resíduo. Por ser rico em matéria orgânica e em macro e micronutrientes para as plantas, é recomendada sua aplicação como condicionador e ou fertilizante dos solos.

A aplicação do lodo de esgoto em solos agrícolas tem como principais benefícios à incorporação dos macronutrientes nitrogênio e fósforo e dos micronutrientes zinco, cobre, ferro, manganês e molibdênio. O lodo fornece ao solo os nutrientes para a cultura, entretanto é necessário o conhecimento de sua composição, a fim de se calcular as quantidades adequadas a serem incorporadas, sem riscos de toxidades às plantas, ao homem e de poluição ambiental.

O lodo de esgoto pode influenciar de forma positiva nas características físicas do solo, como a formação de agregados de partículas do solo, com conseqüente melhoria da infiltração, da retenção de água e da aeração, com reflexos ambientais imediatos, como a redução da erosão e melhoria da qualidade dos solos degradados.

Várias técnicas têm sido utilizadas com o objetivo de recuperar solos degradados, a maioria delas combina práticas mecânicas, que visam romper camadas compactadas, com a adição de matéria orgânica. Várias fontes de matéria orgânica também têm sido utilizadas. Como fonte alternativa, o lodo de esgoto vem de maneira crescente, revelando-se como um importante insumo agrícola, de interesse na recuperação de solos degradados bem como na fertilização das culturas, de preferência aquelas que não são de consumo direto pelos seres
humanos. O reflorestamento, por não ser uma atividade que envolve produtos para consumo alimentar e, pelo fato de poder ser instalado em áreas distantes de núcleos urbanos, com acesso restrito a pessoas e animais, apresenta grande vantagem, em relação às culturas comerciais, no tocante ao uso de lodo de esgoto, segundo Poggiani e Benedetti (2000).

A partir da década de 60 com o crescimento populacional e a demanda por maiores quantidades de energia, os governos passaram a empreender esforços para suprirem suas necessidades. Desta forma, diversas usinas hidrelétricas foram projetadas para este fim. No Estado de São Paulo, foi construída a Usina Hidrelétrica de Ilha Solteira, no Rio Paraná. Tendo em vista não existirem, na época, relatórios de impacto ambiental, a construção transcorreu sem a adequada preocupação com o nível de degradação do meio ambiente. De fato, foram retiradas grandes quantidades de solo para essa construção (área de empréstimo), determinando a degradação de uma área superior a 1000 hectares nos municípios de Ilha Solteira (SP) e Selvíria, (MS), ambos margeando o Rio Paraná.

As áreas de empréstimo constituem-se em um ecossistema degradado, pois teve eliminado, juntamente com a vegetação, os seus meios de regeneração bióticos como o banco de sementes, banco de plântulas, sementes e rebrota. Apresenta, portanto, baixa resiliência, isto é, seu retorno ao estado anterior pode não ocorrer ou ser extremamente lento.

Portanto, o problema de degradação da área em estudo foi gerado em conseqüência da construção da Usina Hidrelétrica de Ilha Solteira, SP. Na busca de técnicas que possam recuperar áreas degradadas, formas alternativas de matéria orgânica, e verificação do potencial do lodo de esgoto como condicionante das propriedades físicas, químicas e fertilização dos solos degradados, esta pesquisa foi proposta com o intuito de estudar a influência do lodo de esgoto em algumas propriedades físico-hídricas, químicas e agrosilviculturais de um Latossolo Vermelho degradado, remanescente da área de “empréstimo” usada para construção da Usina Hidrelétrica de Ilha Solteira, SP.
2. REVISÃO DE LITERATURA

2.1 Degradação dos solos

A definição da degradação do solo está associada à própria definição de qualidade do solo, ou seja, à medida que as características determinantes da qualidade de um solo são alteradas negativamente, estabelece-se um processo de degradação (ALVES, 2001).

Mielniczuk (1999) menciona que vários conceitos de qualidade de solo foram propostos, sendo o de Doran e Parkin (1994) o melhor deles, definindo a qualidade do solo como sendo a sua capacidade em manter a produtividade biológica, a qualidade ambiental e a vida vegetal e animal saudável na face da terra.

De acordo com Guerra e Cunha (2003) os processos naturais, como a formação dos solos, lixiviação, erosão, deslizamentos, modificação do regime hidrológico e da cobertura vegetal, entre outros, ocorrem nos ambientes naturais, mesmo sem a intervenção humana. No entanto, quando o homem desmata, planta, constrói, transforma o ambiente e, esses processos, ditos naturais, tendem a ocorrer com maior intensidade, e nesse caso as conseqüências para a sociedade são quase sempre desastrosas.

A atividade agrícola com ênfase na monocultura tem sido um fator de aceleração da degradação do solo, geralmente ultimada pelo superpastejo e uso do fogo. Nesta fase se inicia o processo de perda da estrutura do solo e voçorocamento, agravando ainda mais a degradação (FARIA e FRANCO, 1994).

Oldeman (1994) citado por Dias e Griffith (1998) menciona que são os seguintes os fatores de degradação do solo: a) desmatamento ou remoção da vegetação natural para fins de agricultura, florestas comerciais, construção de estradas e urbanização; b) superpastejo da vegetação; c) atividades agrícolas, incluindo ampla variedade de práticas agrícolas, como uso insuficiente ou excessivo de fertilizantes, uso de água de irrigação de baixa qualidade, uso inapropriado de máquinas agrícolas e ausência de práticas conservacionistas de solo; d)
exploração intensa da vegetação para fins domésticos, como combustível, cercas, expondo-se o solo à ação dos agentes de erosão, e e) atividades industriais ou bioindustriais que causam a poluição do solo.

Em conflito com a obrigatoriedade de preservação da qualidade hídrica de mananciais, a ocupação urbana promove o crescente desmatamento e a impermeabilização do solo. O resultado disso se traduz no assoreamento de rios e córregos com a frequência ainda maior de cheias e inundações, que atingem exatamente os estratos mais pobres da população.

As barragens propiciam a geração de energia hidrelétrica, o fornecimento de água, a regulagem das cheias e a irrigação. Mas, ao mesmo tempo, podem causar impactos ambientais em larga escala como a inundação de solos de plantio, florestas, jazidas minerais, cidades e povoamentos, a destruição do habitat de animais, microorganismos, plantas e pessoas, afetando as águas subterrâneas, a qualidade da água do rio, e o microclima. Qualquer obra de engenharia altera as condições ambientais. As hidrelétricas, em particular, agridem os ecossistemas com a construção de obstáculos nos leitos dos rios (barragens), propiciando a formação de reservatórios. Áreas degradadas resultantes de obras hidrelétricas, via de regra, são provenientes de empréstimos para a construção de barragens e obras de apoio ou bota-foras (EMBRAPA SOLOS, 2001).

Em um planejamento de recuperação de uma área degradada, o grande desafio a ser alcançado é o estabelecimento de um horizonte A, para que a partir daí, o processo seja catalizado pela biosfera, podendo surgir outros horizontes, conforme o condicionamento natural. Estará se interferindo em um ou mais fatores de formação do solo, numa tentativa de acelerar sua gênese (ALVES, 2001).
2.2 Recuperação dos solos

A recuperação de áreas degradadas pode ser definida como um processo de reversão dessas áreas em solos produtivos e auto-sustentáveis, de acordo com uma proposta preestabelecida de uso do solo (IBAMA, 1990), podendo chegar ao nível de uma recuperação de processos biológicos sendo assim chamada “reabilitação”, ou mesmo aproximar-se muito da estrutura ecológica original- “restauração”.

A recuperação de áreas degradadas é um processo em constante aprimoramento que exige conhecimento, tecnologia e permanente monitoramento. Trata-se de criar condições para o restabelecimento de complexas redes de relações ecológicas entre solo, plantas, animais e microclima, que permitam o reequilíbrio dinâmico da natureza em áreas hoje desprovidas dessas condições (REIS; ZAMBONIM; NAKAZONO, 1999).

A matéria orgânica do solo é um dos melhores indicadores de qualidade do solo, pois se relaciona com inúmeras propriedades físicas, químicas ebiológicas (DORAN e PARKIN, 1994). Portanto, na recuperação de um solo degradado, a adição e balanço de matéria orgânica são fundamentais, pois a melhoria e manutenção das condições físicas internas e externas do solo só poderão ser alcançadas e mantidas, via biológica; isto é, por meio da ação de raízes, da atividade macro e microbiológica e decomposição do material orgânico (ALVES, 1992).

Segundo Carvalho (1998) a função da matéria orgânica é melhorar as propriedades físicas do solo com o aumento da porosidade (aeração) e da retenção de água, por meio da formação de grânulos no solo, servir de fonte de minerais para as plantas, pois a ela estão ligados o nitrogênio, o fósforo e o enxofre e propiciar o desenvolvimento da comunidade microbiana do solo, formada por bactérias, fungos, algas, vírus e protozoários que atuam na sua decomposição.

Oliveira et al. (2000) relatam que o solo não é apenas um material inerte que reflete a composição do material de origem, mas forma-se e desenvolve-se como resultado do efeito de
fatores ambientais ativos, como clima e vegetação, sobre o material, em dado tempo. No processo de recuperação, a seleção de espécies, bem como a determinação de requerimentos nutricionais, constitui passos importantes para se obter o sucesso esperado. A utilização de espécies de rápido crescimento, como as leguminosas, que desenvolveram simbioses com bactérias fixadoras de nitrogênio e fungos micorrízicos, tem-se mostrado bastante promissora.

Boni et al. (1994) trabalharam em uma área de empréstimo com cerca de 1,10 m de camada de solo retirada (Latossolo Roxo). A recuperação foi realizada com o emprego de leguminosas (Crotalária e Guandu) e com vegetação espontânea instalada (capim Napier). Após 5 anos (dois ciclos consecutivos, seguidos de três de pousio), os autores verificaram que as camadas compactadas tiveram redução de densidade do solo (1,25 para 1,18, e 1,48 para 1,16 kg dm$^{-3}$, respectivamente), elevação de porosidade (0,55 para 0,57, e 0,48 para 0,58 m3 m$^{-3}$) e aumento nos valores de diâmetro médio ponderado. Essas alterações, segundo os autores, ocorreram em decorrência dos efeitos das vegetações que se instalaram, implementando a recuperação do solo degradado que hoje está incorporado às normais atividades agrícolas de um campo experimental.

Davide (1994) relata que o capim gordura é uma espécie que possui grande capacidade de colonizar solos degradados, cobrindo-os e incorporando grande quantidade de matéria orgânica nos mesmos, mas seu crescimento agressivo impede o crescimento das árvores, inviabilizando o processo de sucessão secundária e atraindo o fogo em época de seca. Sua utilização, bem como de outras gramíneas associadas às espécies arbóreas e abustivas, dependerá do desenvolvimento de tecnologias que visem contornar essas dificuldades.

Faria e Franco (1994) recomendam revegetar totalmente a área a ser recuperada, utilizando espécies florestais de rápido crescimento, combinados com espécies de crescimento mais lento, pois essa técnica tem se destacado por fornecer rápido recobrimento do solo,
auxiliar na redução dos efeitos das chuvas e garantir a continuidade no processo de regeneração.

Silva et al. (2000), em estudo realizado na “área de empréstimo” originada da construção da Usina Hidrelétrica de Ilha Solteira, SP, com o objetivo de verificar os efeitos de espécies e variedades de pinus, instaladas em 1982, na recuperação do solo, verificaram que o *Pinus caribaea* var. *hondurensis* mostrou-se promissor, por apresentar um bom crescimento aliado a sua sobrevivência; as características físicas do solo (macroporosidade, microporosidade, porosidade total e densidade do solo), de modo geral não apresentaram diferenças entre os tratamentos.

O lodo esgoto pode também ser utilizado na recuperação de solos degradados, pois a matéria orgânica deste resíduo é o principal modificador do complexo coloidal do solo, alterando significativamente suas propriedades físicas e químicas (BETTIOL e CAMARGO, 2000).

Pagliai et al. (1981) estudaram a interação do lodo de esgoto e resíduos sólidos urbanos nas propriedades físicas do solo, constataram incremento significativo da porosidade total com a adição de 50 Mg ha\(^{-1}\) de lodo de esgoto anaeróbico, quando comparado com a testemunha, sendo de 8,2 % no primeiro período medido (30 dias após a aplicação) e de 15,2 % no segundo período (4 meses após a aplicação).

Silva et al. (2001) observaram que o lodo de esgoto melhora a fertilidade do solo pelo fornecimento de nutrientes, principalmente de Ca, P, S e Zn e pelo aumento da CTC efetiva, proporcionando melhor recuperação para o solo degradado.

2.3 Composição do lodo de esgoto

O lodo de esgoto é o resíduo da água residuária, ou seja, o resíduo da água usada em atividades domésticas ou industriais, que é lançada nos sistemas de captação de esgoto e
direcionada para estações de tratamento de esgotos (ETE) ou lançadas diretamente nos mananciais hídricos superficiais (MELO; MARQUES; MELO, 2001). O biossólido ou lodo de esgoto é o resíduo que se obtém após o tratamento das águas servidas (esgotos) com a finalidade de torná-las menos poluídas e permitir seu retorno ao ambiente sem que sejam agentes de poluição.

O tratamento de esgotos gera, além de águas residuais com baixa carga poluidora, um resíduo chamado lodo de esgoto ou biossólido, composto por matéria orgânica, nutrientes e alguns elementos potencialmente tóxicos. A disposição adequada deste resíduo é um dos principais desafios a ser enfrentado pelos gestores ambientais (GALDOS; DE MARIA; CAMARGO, 2004).

Atualmente, diversos usos alternativos têm sido desenvolvidos para o lodo de esgoto, como: agregados leves para construção civil, fabricação de tijolos e cerâmicas, fonte de energia para produção de cimento e conversão do lodo em óleo combustível (TSUTIYA, 2001a). A aplicação de lodo na agricultura como adubo orgânico é considerada a alternativa mais promissora de disposição final desse resíduo, devido a sua composição, ou seja, a presença de nutrientes e matéria orgânica.

Segundo Nuvolari (2003) o lodo de esgoto é constituído de 99,9 % de água e apenas 0,1 % de sólidos, sendo que cerca de 75 % desses sólidos, são constituídos de matéria orgânica em processo de decomposição. Nesses sólidos, proliferam microrganismos, podendo ocorrer organismos patogênicos, dependendo da saúde da população contribuinte.

De acordo com Malavolta et al. (2000) existem vários tipos de lodo de esgoto, lama ou resíduos orgânicos que podem ser produzidos e, dependem do método de tratamento do esgoto: lodo sedimentoso, resultado da deposição simples; lodo digerido, resultando a decomposição anaeróbica do sedimentado; lodo ativado, produzido por um tratamento
aeróbico especial rápido e deposição de materiais em suspensão; lodo ativado e digerido; lodo precipitado quimicamente.

Algumas características da composição geral do lodo de esgoto estão apresentadas na Tabela 1.

Tabela 1. Composição geral do lodo de esgoto.

<table>
<thead>
<tr>
<th>Características</th>
<th>Lodo não tratado</th>
<th>Lodo digerido</th>
<th>Lodo ativado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Faixa</td>
<td>Valor típico</td>
<td>Faixa</td>
</tr>
<tr>
<td>Matéria Seca Total (%)</td>
<td>2,0-8,0</td>
<td>5,0</td>
<td>6,0-12,0</td>
</tr>
<tr>
<td>Proteína (% MS)</td>
<td>20,0-30,0</td>
<td>25,0</td>
<td>15,0-20,0</td>
</tr>
<tr>
<td>Nitrogênio (N% MS)</td>
<td>1,5-4,0</td>
<td>2,5</td>
<td>1,6-6,0</td>
</tr>
<tr>
<td>Fósforo (P₂O₅ % MS)</td>
<td>0,8-2,8</td>
<td>1,6</td>
<td>1,5-4,0</td>
</tr>
<tr>
<td>Potássio (K₂O % MS)</td>
<td>0,0-1,0</td>
<td>0,4</td>
<td>0,0-3,0</td>
</tr>
<tr>
<td>Celulose (% MS)</td>
<td>8,0-15,0</td>
<td>10,0</td>
<td>8,0-15,0</td>
</tr>
<tr>
<td>pH</td>
<td>5,0-8,0</td>
<td>6,0</td>
<td>6,5-7,5</td>
</tr>
</tbody>
</table>

2.4 Riscos ambientais causados pelo lodo de esgoto

Em função da sua composição, o lodo de esgoto pode apresentar características indesejáveis sob o ponto de vista agronômico, tais como: desbalanço entre nutrientes, presença de organismos patogênicos, elevadas concentrações de sais solúveis e metais pesados (ANDRADE ; MATTIAZZO, 2000).

Segundo Tsutiya (2001b) o lodo de esgoto, apesar de ser uma fonte de material orgânico e de nutrientes, contribui também para a contaminação do solo com metais pesados. Os metais pesados não apenas exercem efeitos negativos sobre o crescimento das plantas, mas também afetam os processos bioquímicos que ocorrem no solo.

De acordo com Marques et al. (2001) a composição dos lodos de esgoto, em termos de metais pesados, varia com o nível sócio-econômico e cultural da população, grau de industrialização da região e do porcentual que os esgotos industriais representam do total de
esgotos gerados e tratados. Quando se utiliza o lodo de esgoto em solos cultivados, como fertilizantes ou condicionadores do solo, existe a possibilidade desses elementos, em suas formas mais perigosas, serem absorvidos pelas plantas e acumulados em tecidos que poderiam servir de alimentos para animais e humanos. Assim, esses elementos entrariam na cadeia alimentar, possibilitando a ocorrência de danos às plantas e aos animais que delas se alimentarem.

Martins et al. (2003), avaliando o efeito da adição de lodo de esgoto, conjugada ou não com calagem, na acumulação de metais pesados em plantas de milho, durante quatro anos consecutivos, observaram que a calagem foi suficiente em reduzir a absorção de Zn, Fe e Mn e não afetou a absorção de Cu pelo milho, revelando-se como prática importante na prevenção da acumulação excessiva de metais pesados em plantas cultivadas em solos tratados com lodo de esgoto.

Borges e Coutinho (2004) estudando a distribuição de metais pesados no solo após aplicação de lodo de esgoto observaram que a utilização de lodo promoveu maiores acréscimos nos teores de metais pesados nas frações mais fitodisponíveis, e que a elevação do pH do solo causou uma redistribuição dos metais pesados da fração trocável para formas menos fitodisponíveis (orgânica e, ou, de óxidos).

Molina (2004) avaliando o teor de nitrogênio e metais pesados em um Latossolo com cinqüenta e cinco meses após a aplicação de lodo de esgoto verificou que a dose de até 40 t ha⁻¹ de lodo não proporcionou aumento nos teores dos metais Cd e Cr no solo, e que os teores de Cu, Ni e Zn extraíveis aumentaram com o tempo decorrido desde a aplicação do lodo, indicando a possibilidade de mobilidade e fitodisponibilidade desses metais no solo quando aplicado a dose de 40 t ha⁻¹.

Oliveira e Mattiazzo (2001), analisando a mobilidade de metais pesados em um Latossolo tratado com lodo de esgoto e cultivado com cana-de-açúcar verificaram que os
metais Cd, Ni e Pb encontraram-se em baixos teores no solo e na solução do solo. Já para os metais Cu e Cr, não ocorreu evidências de mobilidade ao final de dois anos agrícolas e o Zn se mostrou um elemento móvel no perfil do solo, sendo encontrados incrementos significativos até a camada de 0,4-0,6 m.

Um outro aspecto relevante presente na composição do lodo de esgoto é a presença de microrganismos patogênicos. Segundo Bettiol e Camargo (2000) o lodo de esgoto é rico em patógenos, estes microrganismos podem inviabilizar o uso do lodo de esgoto em diversas culturas, principalmente hortícolas e demais produtos que podem ser consumidos crus. Em função da origem e do processo de obtenção utilizado, o lodo de esgoto apresenta composição muito variável, sendo um material rico em matéria orgânica (40-60 %), em nitrogênio e em alguns micronutrientes.

A matéria orgânica do solo aumenta a CTC, melhora a capacidade do solo em fornecer nutrientes para plantas e microrganismos, aumentando a capacidade de retenção de água, retendo a energia solar, consequentemente, aumentando o tempo de sobrevivência dos organismos patogênicos no ambiente (MELO et al., 2001).

Andraus et al. (1998), estudando o efeito do lodo aeróbio desidratado por filtro prensa da ETE Belém em Curitiba, PR, em Latossolo com cobertura morta, verificaram que, após 30 dias da aplicação do lodo, não mais se detectava a presença de Salmonella spp, enquanto que, após 140 dias, a população de estreptococos fecais decresceu em 88,4 % e a população de coliformes fecais ainda se mantinha em 2,7 x 10^4 NMP 100g^-1 solo.

Thomaz Soccol et al. (1997), estudando a sobrevivência de parasitos em solos agrícolas em diferentes tipos de lodo, observaram que para o lodo digerido aeróbio quando aplicado dose de 60 Mg ha^-1 houve uma redução de 10,6 ovos de helmintos por grama de MS, para 0,19 e 0,03 ovos g^-1 MS aos 40 e 180 dias após a aplicação. A redução na viabilidade dos
ovos, que era de 74 %, passou para 45,23 e 19,85 %, respectivamente aos 40 e 180 dias após a aplicação.

No que se refere ao nitrogênio, ele se apresenta no lodo de esgoto predominantemente sob a forma orgânica podendo ser encontrado teores variáveis de nitrogênio amoniaca (5 a 60% do total) em função do processo gerador do resíduo (TSUTYA, 2001b).

Segundo Colodro (2005) quando o lodo fica acumulado em excesso no solo, acontece a lixiviação do nitrato, que pode chegar ao lençol freático contaminando a água com excesso de sais. Oliveira et al. (2001), em um experimento em condições de campo, utilizando um solo de textura média onde o lodo foi aplicado em taxas de até 99 t ha\(^{-1}\) no primeiro ano de cultivo e de até 110 t ha\(^{-1}\) no segundo ano observaram a 90 cm de profundidade, concentrações de nitrato maiores do que as do padrão estabelecido pela Organização Mundial da Saúde (OMS) para águas potáveis, que é de 10 mg L\(^{-1}\), evidenciando o potencial para contaminação de aquíferos pelo nitrato proveniente da mineralização do nitrogênio orgânico contido no lodo de esgoto.

Silva et al. (1999), observaram que a calagem feita em dois Latossolos Vermelho-Amarelo, mediante a utilização de CaCO\(_3\), resultou em aceleração do processo de mineralização e diminuição das quantidades de N imobilizado, reduzindo a contaminação do lençol freático.

Boeira (2000), estudando a aplicação de lodo de esgoto em solo argiloso cultivado com milho, verificou que mesmas quantidades de nitrato movimentaram-se no perfil do solo quando utilizado lodo de esgoto ou adubação mineral convencional, ou mesmo no caso de nenhuma aplicação de adubo, ou seja, seguindo-se a recomendações obtidas pelas pesquisas, a utilização de lodo como adubo nitrogenado pode trazer benefícios ao produtor, por ser uma fonte alternativa de nutrientes, e também ao meio ambiente, por aliviar a carga de esgoto nos mananciais de água.
2.5 Uso do lodo de esgoto em plantações florestais

No Brasil e particularmente no Estado de São Paulo as áreas florestadas com espécies de eucaliptos e pinheiros, utilizadas para a produção de celulose e madeira para serraria, ocupam uma superfície de aproximadamente 300.000 hectares e poderiam ser beneficiadas com o uso do lodo de esgoto. Na Europa, como na América do Norte e Austrália, existem registros de respostas favoráveis da utilização de lodo de esgoto em espécies florestais de interesse silvicultural (TSUTIYA, 2001b).

Henry et al. (1994) relatam diversos experimentos, assinalando que a aplicação de lodo de esgoto beneficia os sítios florestais com resultado imediato que pode ser constatado pelo crescimento das árvores e da vegetação do sub-bosque e, em longo prazo, pelo aumento da produtividade do sitio. Assinalam, entretanto estes autores, a necessidade de monitoramento das áreas experimentais, principalmente com relação à movimentação dos metais pesados no solo e na vegetação e aos efeitos sobre a vida silvestre.

Fiskell et al. (1990) verificaram baixa concentração de metais em plantio de *Pinus elliottii* var. *elliottii* e no sub-bosque, após aplicação de até 22 Mg ha\(^{-1}\) de lodo de esgoto em solo arenoso. Dos metais remanescentes no horizonte orgânico somente zinco e cádmio apresentaram alguma quantidade na forma trocável, sendo que apenas o zinco foi acumulado em quantidade apreciável na planta.

Segundo Hart et al. (1988) a aplicação de lodo de esgoto em plantações florestais apresenta uma série de vantagens em comparação com os sistemas agrícolas, pois os produtos das culturas florestais, normalmente não são comestíveis, diminuindo o risco quanto à entrada de possíveis contaminantes na cadeia alimentar. Os solos florestais são geralmente pobres resultando em melhor aproveitamento e menores perdas dos nutrientes e as culturas florestais oferecem menor oportunidade de contato humano com o lodo de esgoto recém aplicado.
Como na maioria dos resíduos sólidos, precauções devem ser levadas em consideração, quanto à localização, forma e dose de aplicação do lodo, evitando a contaminação do solo, nascentes, cursos de água e lençóis freáticos (VAZ; GONÇALVES, 2002).

O potencial de aplicação de lodo de esgoto em áreas florestadas é grande, em função das seguintes razões: as florestas ocupam extensas áreas, e eventuais diminuições no uso de fertilizantes minerais podem constituir substanciais reduções de custo na produção florestal; amplas áreas florestais apresentam solos com deficiências ou desbalanços nutricionais, especialmente N e P. A carência de nutrição adequada é um dos principais fatores limitantes da produtividade florestal em todo o mundo; as áreas florestais, de um modo geral, são localizadas em sítios bem drenados e não estão sujeitas a enchente periódica; a maioria das florestas, sobretudo as plantadas, não está associada à produção de alimentos, o que permite a aplicação de lodo de esgoto com baixo risco à saúde pública. Porém, alguns inconvenientes causados pelo lodo de esgoto devem ser apontados, pois podem limitar sua aplicação, tais como: em algumas regiões ou países, florestas são usadas como área de visitação pública e recreação, expondo os visitantes a contaminações, principalmente por patógenos; metais pesados podem ser absorvidos por cogumelos e sementes comestíveis, elevando os riscos de contaminação da fauna e de usuários da floresta (VAZ; GONÇALVES, 2002).

2.6 Influência do lodo de esgoto nas propriedades físico-hídricas do solo

A adição de lodo de esgoto ao ambiente do solo, por sua composição química e biológica pode causar alterações nas propriedades físicas, químicas e biológicas do mesmo.

Guerrini et al. (2004), estudando os atributos físicos e químicos de substratos compostos por lodo de esgoto e casca de arroz carbonizada, observaram que o aumento na dose de lodo nas misturas elevou a microporosidade do substrato, o que proporcionou maior
capacidade em reter água; porém em substratos com altas doses, observou-se alta densidade e, conseqüentemente, redução da proporção de macroporos, fato este que dificulta a aeração dos substratos prejudicando o desenvolvimento do sistema radicular.

Já Melo et al. (2004), em estudo com lodo de esgoto em um Latossolo Vermelho distrófico, textura média (LVd) e Latossolo Vermelho eutrófico argiloso (LVef), observaram que densidade do solo diminuiu significativamente apenas na dose de 50,0 Mg ha\(^{-1}\) de lodo no LVd, na camada de 0,00-0,10 m. Já no LVef não observaram alterações na densidade do solo com a adição de até 50,0 Mg ha\(^{-1}\) de lodo, por causa da mineralogia oxídica que confere a esse solo uma melhor estrutura natural.

Marciano (1999), avaliando a influência de resíduos urbanos nas propriedades físico-hídricas de um Latossolo Vermelho Amarelo, verificou que com a aplicação do resíduo urbano a densidade do solo diminuiu e conseqüentemente houve aumento da porosidade total na camada de 0 a 0,15 m no segundo ano de aplicação do mesmo.

O lodo de esgoto como condicionante do solo pode promover uma melhoria na sua estrutura, alterando favoravelmente a proporção de agregados estáveis em água. Jorge et al. (1991) observaram um aumento na quantidade de agregados com diâmetro médio superior a 1,0 mm no tratamento com lodo em um Latossolo Vermelho-Escuro, com um acréscimo no índice de agregação de 0,76 para 1,44 mm. A estabilidade de agregados maiores que 2,0 e 4,0 mm foi reduzida com a adição de calcário ao lodo.

Souza et al. (2005), estudando a estabilidade de agregados e resistência do solo à penetração em Latossolos adubados por cinco anos com lodo de esgoto, concluíram que a aplicação de 50,0 Mg ha\(^{-1}\) de lodo de esgoto aumentou a agregação do solo na camada de 0,00-0,10 m, onde foi incorporado.

Os agregados do solo são compostos de partículas primárias (argila, silte e areia) e matéria orgânica que se aderem umas às outras (KEMPER; ROSENNAU, 1986). A presença
de agregados estáveis potencializa a capacidade de armazenamento de água, diminuindo as perdas de partículas e nutrientes por processos erosivos e facilita a proteção física e o acúmulo de matéria orgânica no solo (JASTROW et al., 1998).

Barbosa et al. (2002), trabalhando com um Latossolo Vermelho Eutrofêrrico na Fazenda Experimental de Londrina, observaram o efeito do tratamento por dois anos com lodo de esgoto sobre as propriedades físicas deste solo, e concluíram que há uma tendência na formação de agregados maiores (DMP) quando se utiliza lodo de esgoto.

De acordo com Kladivko e Nelson (1979) o lodo de esgoto proporcionou aumento no diâmetro mediano ponderado (DMP) com a adição de 56 Mg ha\(^{-1}\) de 1,49 contra 0,59 da testemunha, na camada de 0,00-0,05 m com incorporação procedida com enxada rotativa. Esses autores concluíram que a maior agregação se deve à presença de partículas de lodo estáveis em água, além da cimentação das partículas do solo promovida pelo metabolismo microbiano, cujo aumento foi induzido pela matéria orgânica, quando aplicado o lodo de esgoto.

A aplicação de matéria orgânica no solo melhora a agregação e a estruturação, corrigindo, conseqüentemente a restrição ou excesso de aeração e drenagem, pois a matéria orgânica exerce apreciável influência nas propriedades físicas do solo, contribuindo para maior agregação, reduzindo a densidade do solo (quanto maior o teor de matéria orgânica encontrada no solo, menor é a densidade do solo, havendo, portanto, uma correlação negativa), contudo melhora a condutividade hidráulica, além de, indiretamente aumentar a capacidade do solo em armazenar água, proporcionando ótima aeração e drenagem interna (KIEHL, 1985).
2.7 Influência do lodo de esgoto nas propriedades químicas do solo

Pelo conteúdo de matéria orgânica e nutriente das plantas, o lodo de esgoto apresenta potencial para uso em agricultura, substituindo parte da adubação mineral.

Marques (1997) observou, em cana-de-açúcar, que doses de lodo de esgoto até 60 Mg ha\(^{-1}\) elevaram o teor de P-disponível do solo até 100 mg dm\(^{-3}\). A aplicação de lodo de esgoto ao solo causa aumento no teor de matéria orgânica, melhorando o nível de fertilidade, promovendo aumento do pH, diminuição da acidez potencial, aumento gradual na disponibilidade de nutrientes como Ca, Mg e S. Além disso, a presença da matéria orgânica melhora a capacidade de troca de cátions (MELO et al., 1994).

Berton et al. (1997), estudando a reciclagem de resíduos urbanos na agricultura, observaram que o pH do solo foi ligeiramente aumentado pela adição do composto de lixo, não ultrapassando o índice de 5,0 na dosagem mais elevada do composto (80 Mg ha\(^{-1}\)).

De acordo com Melo, Marques e Melo (2001) como o lodo de esgoto é rico em matéria orgânica pode fornecer N as plantas em quantidades satisfatórias, além de outros elementos como P, S, Ca e micronutrientes.

Ros et al. (1993) analisando o efeito imediato do lodo de esgoto no milheto e residual na associação aveia-ervilhaca, observaram que as quantidades de N, P e K absorvidas pela parte aérea do milheto aumentaram significativamente com as doses de lodo de esgoto e quando aplicado na dosagem máxima, o lodo aumentou essas quantidades de 69 para 141 kg ha\(^{-1}\), de 88 para 30 kg ha\(^{-1}\) e de 98 para 184 kg ha\(^{-1}\) de N, P e K, respectivamente.

Raij (1998) observou que a aplicação de lodo de esgoto ao solo aumenta o teor de nitrogênio e fósforo na ordem de três vezes a quantidade máxima necessária recomendada para a maioria das culturas de grãos, para uma dose de 32 Mg ha\(^{-1}\). Observando também, para essa mesma dosagem que, ocorreu uma adição de 100 kg de nitrogênio disponível, sendo que
os outros 170 kg foram inseridos na forma orgânica, contribuindo para aumentar ainda mais o nitrogênio disponível ao longo do tempo.

Simonete et al. (2003) estudando o efeito do lodo de esgoto em um Argissolo, verificaram que em virtude dos aumentos dos teores trocáveis de Ca, Mg e K, com aplicação de lodo de esgoto no solo, houve um aumento proporcional na soma de bases do solo, isto é, a cada dose de lodo de esgoto aplicada houve aumento de 0,0071, 0,5881 e 0,1013 mmolₑ dm⁻³ nos teores de K, Ca e Mg, respectivamente, proporcionando aumento aproximado de 0,7 mmolₑ dm⁻³ na soma de bases, a cada dose aplicada do resíduo.

Rocha, Gonçalves e Moura (2004) trabalhando com a aplicação de lodo de esgoto em um povoamento de Eucalyptus grandis, verificaram que a fertilidade do solo aumentou gradualmente após a aplicação do lodo, e houve aumento dos teores de matéria orgânica nas camadas de 5-10 e 10-20 cm. Já para o P e Ca o aumento ocorreu nas camadas de 0-5, 5-10 e 10-20 cm, devido a maior incorporação desse resíduo nessas camadas.

Andrade, Oliveira e Cerri (2005) estudando a qualidade da matéria orgânica e estoques de carbono e nitrogênio em um Latossolo tratado com lodo e cultivado com eucalipto, constataram que os teores totais de C e N no solo, bem como a densidade e os estoques de C e N, após cinco anos da aplicação de doses de lodo, não foram influenciados pelos tratamentos estudados.

Os lodos de esgotos contêm macronutrientes como nitrogênio, fósforo, potássio, cálcio, magnésio e enxofre, e também micronutrientes como cobre, zinco, manganês, boro, molibdênio e cloro. Esses nutrientes têm impacto direto no desenvolvimento e rendimento das plantas. Segundo dados bibliográficos levantados por Andreoli (1997) em climas quentes, aproximadamente 50 % do nitrogênio total contido no lodo de esgoto é utilizável pela planta no primeiro ano, podendo cair para 10 a 20 % no segundo ano, e em casos de dosagens altas
de lodo pode haver perda de nitrogênio por lixiviação na forma de nitrato e contaminar o lençol freático.

Magdoff e Amadon (1980) constataram que mais de 55 % do N orgânico adicionado ao solo foi mineralizado no primeiro ano após a aplicação. Porém, para o lodo digerido anaerobicamente, Magdoff e Chromech (1977) observaram que houve mineralização de 14 a 25 % do N orgânico no primeiro ano após a aplicação. O emprego de lodo de esgoto na agricultura, de forma continuada, pode trazer riscos de poluição das águas subterrâneas causadas pela lixiviação do nitrato.

2.8 A cultura de eucalipto

Levantamentos realizados pelo Instituto Florestal do Estado de São Paulo, concluíram que existe um total de 770.010 hectares de reflorestamento com Pinus e Eucalyptus, correspondendo a 3,1 % do total da área territorial do Estado de São Paulo, onde 611.516 ha correspondem às áreas com Eucalyptus (79,4 %) e 158,494 ha (20,6 %) com Pinus (KRONKA e tal., 2003).

A região administrativa de Sorocaba concentra 326.070 hectares, correspondendo a 42,3 % de toda a área florestada em São Paulo. Essa é a região de reflorestamento mais expressiva do estado, seguida de Campinas (110.005 ha-14,3 %) Ribeirão Preto (97.055 ha-12,6 %), Vale do Paraíba (75.425 ha-9,8 %) e Bauru (67.237 ha-8,7 %). Do total de reflorestamento com Eucalyptus (611.516 ha), predominam as espécies de E. grandis (159.249 ha) e E. saligna (92.217 ha).

As florestas de eucalipto são uma das características marcantes da paisagem australiana. Apenas duas (E. deglupta e E. urophylla) das quase seiscentas espécies conhecidas de eucalipto não ocorrem na Austrália, e supõe-se que no seu passado evolutivo os ancestrais do Eucalyptus tiveram a Austrália como centro de desenvolvimento, onde, com o
tempo, evoluíram para a grande diversidade de espécies hoje existente. No Brasil o eucalipto foi introduzido por volta de 1868, no Rio Grande do Sul (LIMA, 1993).

As inúmeras espécies do gênero *Eucalyptus* proporcionam ampla utilização de sua madeira: lenha, carvão, serraria, postes, escoras, estruturas, dormentes, mourões, caixotaria, laminação, marcenaria, construção civil, estacaria, celulose, chapas etc. A casca de muitas espécies pode ser utilizada para a extração de taninos, e as folhas de quase todas as espécies são ricas em óleos essenciais. Além destas utilizações dos produtos florestais do eucalipto, as plantações podem também servir a uma variedade de propósitos, tais como a produção de mel, ornamentação, recuperação de áreas degradadas, proteção de bacias hidrográficas, como quebra-ventos, e vários outros usos.

Colodro (2005), estudando a recuperação de um solo degradado com lodo de esgoto, constatou que o tratamento com 60 Mg ha\(^{-1}\) de lodo de esgoto promoveu maior desenvolvimento do eucalipto. Quanto ao diâmetro dos caules aos 180 dias, observou um incremento de 0,004 m entre o tratamento com dose máxima de lodo e a testemunha, representando 36 %. Aos 360 dias a diferença foi maior (62 %).

A importância do reflorestamento com eucalipto não se restringe, aos valores diretos representados pelos inúmeros usos de seus produtos florestais, mas também pelo papel decisivo que estas plantações florestais vêm desempenhando no contrabalanço dos efeitos da devastação das florestas naturais nos países em desenvolvimento, principalmente nas regiões tropicais (EVANS, 1982).

Em décadas passadas o reflorestamento era conhecido como “desertos verdes”. A experiência acumulada em anos de plantio e os avanços da pesquisa dizimaram grande parte das dúvidas. Por exemplo, a afirmação de que o eucalipto seca o solo já foi refutada por autores como Lima (1993) e Novais et al. (1996), que mostraram que o eucalipto comporta-se de forma similar as outras espécies florestais no que diz respeito à dinâmica da água no solo e
da água subterrânea, que os plantios de eucalipto no Brasil consomem a mesma quantidade de água que as florestas nativas; e que o eucalipto é mais eficiente no uso da água quando comparado a outras culturas agrícolas.

2.9 A cultura de braquiária

No Brasil as gramíneas do gênero *Brachiaria* são conhecidas sob o prisma da forragicultura desde a década de 1950. Entretanto, a verdadeira expansão desse gênero ocorreu no cerrado, nas décadas de 70 e 80, principalmente nas regiões de clima mais quente, e hoje, provavelmente ocupa mais de 50% da área de pastagens cultivadas no Brasil tropical (ZIMMER et al., 1994).

Segundo Nussio et al. (2000) a braquiária é o capim mais plantado no país, sendo utilizado na cria, recria e engorda dos animais. Essa gramínea vem ocupando as áreas das pastagens nativas, que geralmente são de baixa produção em rendimento de forragem e de proteína bruta, ocasionando perda de peso animal.

A *Brachiaria decumbens* é uma espécie perene, que ocorre de forma nativa no leste tropical da África em altitudes acima de 800 m, sob clima moderadamente úmido, em pastagens abertas ou em áreas com arbustos esporádicos e em solos férteis (CARVALHO et al., 1991).

De acordo com (ZIMMER et al., 1994) a *Brachiaria decumbens* é adaptada a muitos tipos de solo, e requer boa drenagem, condições de boa fertilidade, embora tolere condições de acidez. A mesma não produz quantidades satisfatórias de forragem em solos com teores baixos de fósforo e potássio. No entanto, tem demonstrado respostas acentuadas a níveis mais altos de P e K no solo e N em cobertura.

Macedo e Zimmer (1993), estudando o sistema pasto-lavoura e seus efeitos na produtividade agropecuária, constataram que a integração agricultura-pecuária proporciona
m melhoria na atividade biológica favorecendo a reciclagem de nutrientes, a estabilidade dos agregados do solo, a redução na densidade do solo e consequentemente, a redução da compactação superficial, favorecendo a infiltração e o armazenamento da água das chuvas no perfil.

Gijsman e Thomas (1996) avaliaram os efeitos de pastagens de gramínea pura e consorciada, com diferentes taxas de lotação, nas condições físicas de um oxisolo previamente coberto por savana, concluíram que a densidade do solo não foi afetada e a resistência do solo à penetração foi afetada pela presença da leguminosa e taxa de lotação, mas com valores insignificantes para qualquer importância prática. A taxa de infiltração da água no solo foi mais alta na pastagem consorciada e diminuiu com o aumento da taxa de lotação em ambos os tipos de pastagens.

Do ponto de vista biológico, a microfauna de pastagens torna-se mais pobre em número de espécie. É um fato grave, pois os microrganismos do solo têm papel chave na reciclagem e disponibilidade de nutrientes necessários para os processos biológicos, formação de matéria orgânica do solo, decomposição de resíduos orgânicos e desintoxicação de contaminantes do solo.

Segundo Paladini e Mielniczuk (1991) dentro do universo das plantas, as gramíneas tem exercido maiores benefícios à estruturação do solo. Esses efeitos benéficos são atribuídos principalmente, a alta densidade de raízes, que promove a aproximação de partículas pela constante absorção de água do perfil do solo, às periódicas renovações do sistema radicular e a uniforme distribuição dos exsudatos no solo, que estimulam a atividade microbiana, cujos subprodutos atuam na formação e estabilização dos agregados.

Para Silva e Mielniczuk (1997) as raízes apesar de representarem uma pequena fração dos constituintes orgânicos do solo, exercem grande influência na formação e estabilidade dos agregados do solo. As gramíneas perenes, por apresentarem maior densidade de raízes e
melhor distribuição do sistema radicular no solo, favorecem as ligações dos pontos de contato entre partículas minerais e agregados, contribuindo para sua formação e estabilidade, e podem ser usadas como plantas recuperadoras da estrutura do solo em áreas degradadas. Porém, a consorciação de gramineas e leguminosas é mais eficiente na reagregação do que somente leguminosas ou somente gramineas.
3. MATERIAL E MÉTODOS

3.1 Localização e caracterização da área experimental

O trabalho foi conduzido na Fazenda de Ensino Pesquisa e Extensão (FEPE), pertencente à Faculdade de Engenharia, Campus de Ilha Solteira, da Universidade Estadual Paulista (UNESP), no município de Selvíria, MS. A mesma está localizada na margem direita do Rio Paraná, apresentando as coordenadas geográficas de 51° 22’ de longitude e 20° 22’ de latitude sul, com altitude média de 327 metros (Figura 1).

![Figura 1 - Imagem de satélite mostrando a localização da área experimental.](image_url)

A área em estudo apresenta médias anuais de: precipitação 1370 mm, temperatura 23,5º C e umidade relativa do ar entre 70 e 80 %. O tipo climático segundo Köppen é Aw (clima tropical úmido, com estação chuvosa no verão e seca no inverno). O período chuvoso se estende de outubro a março, sendo que os meses de dezembro, janeiro e fevereiro constituem o trimestre mais chuvoso, e o trimestre mais seco corresponde aos meses de junho, julho e agosto (média de 27 mm). A vegetação natural da área de estudo era o cerrado. Na (Figura 2) são apresentados os dados climatológicos coletados na estação meteorológica situada na Fazenda de Ensino e Pesquisa, pertencente à Faculdade de Engenharia, Campus de Ilha Solteira-UNESP.
Figura 2- Valores da precipitação, temperatura média e umidade relativa do ar, em cada mês do período em que o experimento foi conduzido.

O solo original é um Latossolo Vermelho-Escuro (DEMATTÊ, 1980) e de acordo com a nomenclatura do Sistema Brasileiro de Classificação do solo (EMBRAPA, 1999), é um Latossolo Vermelho distrófico, textura média, profundo e muito intemperizado, relevo suave a plano. O local de instalação da pesquisa é uma área degradada, onde foi retirada uma camada de solo de 8,60 m de espessura para utilização na terraplanagem e fundação na construção da Usina Hidrelétrica de Ilha Solteira, SP (Figura 3).
Figura 3- Vista geral do solo decapitado na área de empréstimo.

Pela grande circulação de máquinas, o solo remanescente da área experimental apresentava-se compactado e totalmente desprovido de vegetação (Figura 4), em decorrência da retirada da camada mais fértil.

Figura 4- Vista geral do local da área experimental em novembro de 2002.
3.2 Delineamento experimental e tratamentos

O delineamento experimental utilizado foi em blocos casualizados, com 6 tratamentos e 4 repetições, instalados em fevereiro de 2003. Os tratamentos foram constituídos dos seguintes usos e manejos: T1– vegetação natural de Cerrado (Figura 5); T2– solo exposto, sem tratamento para recuperação (Figura 6); T3– solo cultivado com eucalipto e braquiária, sem aplicação de lodo de esgoto e adubo mineral; T4 – solo cultivado com eucalipto e braquiária com adubação mineral de acordo com a necessidade da cultura e análise do solo; T5 – solo cultivado com eucalipto e braquiária com uso de 30 Mg ha\(^{-1}\) de lodo de esgoto (a base seca); T6 – solo cultivado com eucalipto e braquiária com uso de 60 Mg ha\(^{-1}\) de lodo de esgoto (a base seca).

Cada parcela ocupou uma área de 120 m\(^2\) (12 m x 10 m). Nas parcelas com fertilizante mineral foram aplicadas as seguintes doses de nutrientes: 20 kg ha\(^{-1}\) de N, 90 kg ha\(^{-1}\) de P e 20 kg ha\(^{-1}\) de K. Em cobertura, foram aplicados 39 kg ha\(^{-1}\) de N e 39 kg ha\(^{-1}\) de K, divididos em três vezes de 13,0 kg ha\(^{-1}\) no ano. Nas figuras 6 e 7 estão representadas a vista geral da área experimental em maio de 2005 e 2006.

Nos tratamentos 3, 4, 5 e 6 foi implantada a cultura de eucalipto (*Eucalyptus citriodora* Hook) e foi também semeada braquiária (*Brachiaria decumbens*) a lanço, entre as linhas de plantio, com o objetivo de contribuir para o aumento de matéria orgânica do solo e reduzir inicialmente o elevado volume de N adicionado ao solo, em função das doses de lodo utilizadas. A escolha da braquiária foi devido a sua capacidade de contribuir para o aporte de carbono, uma vez que apresenta alta relação C/N, e por ter baixa exigência quanto à fertilidade do solo.
Figura 5 - Vista geral da área com vegetação natural de cerrado (T1).

Figura 6 - Vista geral da área com solo exposto (T2).

Figura 7 - Vista geral da área experimental em maio de 2005.
Figura 8 - Vista geral da área experimental em maio de 2006.
3.3 Implantação do experimento

A caracterização física e química da área experimental foi realizada em dezembro de 2002, antes da implantação do experimento e da subsolagem (Tabelas 2, 3 e 4). As amostras indeformadas (em anel volumétrico) foram coletadas em quatro locais da área experimental, nas camadas de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,40 m.

Tabela 2. Valores médios de porosidade total, macroporosidade, microporosidade e densidade do solo degradado antes do preparo de solo, em dezembro de 2002.

<table>
<thead>
<tr>
<th>Camada de solo (m)</th>
<th>Macroporosidade</th>
<th>Microporosidade</th>
<th>Porosidade Total</th>
<th>Densidade do solo kg dm⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00-0,05</td>
<td>0,08 m³</td>
<td>0,23 m³</td>
<td>0,31</td>
<td>1,70</td>
</tr>
<tr>
<td>0,05-0,10</td>
<td>0,09 m³</td>
<td>0,24 m³</td>
<td>0,33</td>
<td>1,68</td>
</tr>
<tr>
<td>0,10-0,20</td>
<td>0,08 m³</td>
<td>0,25 m³</td>
<td>0,33</td>
<td>1,68</td>
</tr>
<tr>
<td>0,20-0,40</td>
<td>0,07 m³</td>
<td>0,24 m³</td>
<td>0,31</td>
<td>1,80</td>
</tr>
</tbody>
</table>

Tabela 3. Distribuição de tamanho de partículas primárias do solo estudado.

<table>
<thead>
<tr>
<th>Camada de solo (m)</th>
<th>Argila</th>
<th>Areia</th>
<th>Silte</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00-0,05</td>
<td>320 g kg⁻¹</td>
<td>515 g kg⁻¹</td>
<td>165 g kg⁻¹</td>
</tr>
<tr>
<td>0,05-0,10</td>
<td>315 g kg⁻¹</td>
<td>521 g kg⁻¹</td>
<td>164 g kg⁻¹</td>
</tr>
<tr>
<td>0,10-0,20</td>
<td>270 g kg⁻¹</td>
<td>542 g kg⁻¹</td>
<td>188 g kg⁻¹</td>
</tr>
<tr>
<td>0,20-0,40</td>
<td>189 g kg⁻¹</td>
<td>526 g kg⁻¹</td>
<td>285 g kg⁻¹</td>
</tr>
</tbody>
</table>

Para obter uma boa descompactação mecânica do solo, foram realizadas duas subsolagens cruzadas atingindo a profundidade de 0,40 m. Para a correção da acidez do solo
foram aplicados 800 kg de calcário dolomítico, o mesmo foi incorporado com grade leve em toda área experimental antes da aplicação do lodo de esgoto e do plantio do eucalipto.

<table>
<thead>
<tr>
<th>Camada (m)</th>
<th>P*</th>
<th>M.O.</th>
<th>pH **</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>H+Al</th>
<th>Al</th>
<th>SB</th>
<th>CTC</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00-0,05</td>
<td>1</td>
<td>5</td>
<td>4,5</td>
<td>0,6</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>6,6</td>
<td>21,6</td>
<td>31</td>
</tr>
<tr>
<td>0,05-0,10</td>
<td>1</td>
<td>4</td>
<td>4,6</td>
<td>0,1</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>6,1</td>
<td>21,1</td>
<td>29</td>
</tr>
<tr>
<td>0,10-0,20</td>
<td>2</td>
<td>3</td>
<td>4,7</td>
<td>0,1</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>6,1</td>
<td>21,1</td>
<td>29</td>
</tr>
<tr>
<td>0,20-0,40</td>
<td>2</td>
<td>3</td>
<td>4,5</td>
<td>0,1</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>5,1</td>
<td>20,1</td>
<td>25</td>
</tr>
</tbody>
</table>

* resina; ** em CaCl₂

O lodo de esgoto foi aplicado na superfície um mês antes do plantio do eucalipto e semeadura da braquiária, sendo o mesmo distribuído manualmente. Em seguida o resíduo foi incorporado com enxada rotativa a uma profundidade de 0,10 m. O lodo, depois de distribuído (Figura 9), permaneceu exposto por 7 dias, sob efeito da radiação solar e de temperaturas entre 35 a 40° C. O objetivo desse manejo foi reduzir o teor de N orgânico a partir da volatização do excesso de amônia. De acordo com Mello et al. (1983) algumas condições favorecem a volatização da amônia: temperaturas elevadas, déficit de saturação do ar, baixo teor de água, rápida evaporação de água, baixa CTC e forma de aplicação do lodo.

Esta operação foi necessária devido às elevadas doses de lodo utilizadas (30 e 60 Mg ha⁻¹), considerando que a dose média para culturas anuais, seja de, no máximo 20 Mg ha⁻¹ para ter certo grau de segurança quanto ao impacto ambiental, desta forma reduzindo o risco de contaminação do lençol freático. A Figura 10 apresenta o aspecto heterogêneo após a
incorporação do lodo no solo, mesmo com o uso da enxada rotativa. A área experimental foi cercada, para evitar a entrada de pessoas e animais.

Figura 9 - Vista geral do lodo espalhado na superfície do solo.

Figura 10 – Vista geral da superfície do solo após a incorporação do lodo com enxada rotativa.

O plantio da cultura de eucalipto e a semeadura da braquiária foram efetuados em março de 2003. O eucalipto foi plantado em sulcos de 0,40 m, tendo sido os mesmos
seccionados após o plantio, de tal forma a se formar uma cova, facilitando a irrigação. O espaçamento entre plantas de eucalipto foi de 2 m x 1,5 m, totalizando, portanto, 40 plantas por parcela e 640 plantas no experimento. A semeadura da braquiária foi feita a lanço. Para a análise das propriedades físicas e químicas foram retiradas amostras em maio de 2005 (dois anos após a instalação do experimento) em quatro camadas de solo 0,00-0,05; 0,05-0,10; 0,10-0,20 e de 0,20-0,30 m.

3.4 Caracterização do lodo de esgoto

3.4.1 Origem do lodo de esgoto

O lodo de esgoto utilizado foi produzido pela Estação de Tratamento de Esgoto – ETE da empresa Saneamento de Araçatuba S/A – Sanear, no município de Araçatuba (Figura 11). Utilizou-se o lodo obtido de efluente predominantemente doméstico, com umidade de 84 %. O teor de metais pesados é baixo e para alguns elementos é nulo (Tabela 7).

Figura 11- Vista da Estação de tratamento de Esgoto de Araçatuba.

Na Estação de Tratamento de Esgoto (ETE) de Araçatuba, utiliza-se o tratamento em lagoa com aeração prolongada, pela oxigenação por equipamento eletromecânico. Após a
aeração, o efluente é desaguado por centrífuga do tipo Decanter, reduzindo sua umidade de 14 a 20 %. O lodo apresenta-se mais orgânico, na forma pastosa. O período de permanência do lodo na lagoa é de 2 dias. Dessa forma, apresenta-se com uma carga elevada de agentes patogênicos, determinando, assim, um maior cuidado no seu manuseio antes e após a incorporação no solo.

3.4.2 Análise química do lodo de esgoto utilizado

De acordo com os dados observados na Tabela 5, o lodo de esgoto pode ser utilizado na agricultura, pois o mesmo apresentou altas concentrações em macronutrientes como o nitrogênio, fósforo, potássio. O N e P foram os macronutrientes que apresentaram maiores destaque em relação à quantidade. Dentre os micronutrientes o Fe, Mn, B, Cu e Zn apresentaram altas concentrações. Esses nutrientes têm impacto direto no desenvolvimento e rendimento das plantas. O lodo também apresentou quantidade satisfatória de matéria orgânica e principalmente, baixa carga de patógenos e de metais pesados.

Tabela 5. Resultados das análises químicas do lodo de esgoto utilizado.

<table>
<thead>
<tr>
<th>M.O.</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>S</th>
<th>B</th>
<th>Cu</th>
<th>Fe</th>
<th>Mn</th>
<th>Zn</th>
<th>Umidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>g dm⁻³</td>
<td>mmolc dm⁻³</td>
<td>.</td>
<td>mg dm⁻³</td>
<td>Kg kg⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>71,26</td>
<td>18,79</td>
<td>15,14</td>
<td>11,06</td>
<td>3,44</td>
<td>7,78</td>
<td>16,37</td>
<td>160,04</td>
<td>960,6</td>
<td>115,74</td>
<td>583,48</td>
<td>0,85</td>
</tr>
</tbody>
</table>

3.4.3 Análise microbiológica do lodo de esgoto

De acordo com a ETE de Araçatuba, o lodo de esgoto apresenta os seguintes dados microbiológicos:

Coliformes totais: $2,3 \times 10^8$ NMP g⁻¹ de lodo
Coliformes fecais: $1,4 \times 10^2$ NMP g$^{-1}$ de lodo

Pesquisa positiva para *Salmonellas* sp: 3,2 NMP g$^{-1}$ lodo

Responsável pela análise: LABORTECHNIC tecnologia - São Paulo, SP.

3.4.3.1 Análise parasitológica

A análise parasitológica foi realizada pela Universidade Federal do Paraná e pelos resultados obtidos o lodo tem as características do lodo classe B (CETESB, 1999). Na Tabela 6 encontra-se os resultados da análise parasitológica.

3.4.4 Análises químicas para fins de toxidade do lodo de esgoto

De acordo com os resultados fornecidos pela ETE que consistem dos elementos químicos considerados metais pesados, as análises químicas do lodo da estação de tratamento de Araçatuba é classificado como Lodo de Esgoto Classe B (CETESB, 1999). Esses resultados encontram-se na Tabela 7.

<table>
<thead>
<tr>
<th>Helminto</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>n.º de ovos/g MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascaris</td>
<td>Viável</td>
<td>29</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Inviável</td>
<td>43</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Toxocera</td>
<td>Viável</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Inviável</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>T. trichiura</td>
<td>Viável</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Inviável</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T. vulpis</td>
<td>Viável</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inviável</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Trichuroidea</td>
<td>Viável</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Inviável</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>H. diminuta</td>
<td>Viável</td>
<td>21</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Inviável</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>H. nana</td>
<td>Viável</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inviável</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Taenia</td>
<td>Viável</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inviável</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>outros</td>
<td>Protozoários</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Soma</td>
<td>Viável</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ovoshelmintos

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>21,12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inviável</td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>29,30</td>
</tr>
</tbody>
</table>
% de viáveis | | | | | **27,91** |

Tabela 7– Análise química do lodo de esgoto da ETE Araçatuba-SP, para fins de toxidade.

Ensaio de Lixiviação

<table>
<thead>
<tr>
<th>Elementos químicos</th>
<th>Resultado</th>
<th>Limite Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsênico</td>
<td>Nd</td>
<td>5,0</td>
</tr>
<tr>
<td>Bário</td>
<td>2,3</td>
<td>100,0</td>
</tr>
<tr>
<td>Cádmio</td>
<td>0,003</td>
<td>0,5</td>
</tr>
<tr>
<td>Chumbo</td>
<td>0,120</td>
<td>5,0</td>
</tr>
<tr>
<td>Cromo Total</td>
<td>0,03</td>
<td>5,0</td>
</tr>
<tr>
<td>Fluoretos</td>
<td>1,29</td>
<td>150,0</td>
</tr>
<tr>
<td>Mercúrio</td>
<td>nd</td>
<td>0,1</td>
</tr>
<tr>
<td>Prata</td>
<td>nd</td>
<td>5,0</td>
</tr>
<tr>
<td>Selênio</td>
<td>nd</td>
<td>1,0</td>
</tr>
</tbody>
</table>

DADOS DA LIXIVIAÇÃO: Tempo total de Lixiviação - 24 horas.

Volume total do líquido obtido - 1.603 mL. Volume de ácido acético adicionado 3,0 mL
pH inicial - 5,28 / pH final - 5,01.

Descrição do material analisado: Lodo da ETE. Aspecto - massa escura e úmida.

Métodos de análises baseados na 20a edição do “Standard Methods for The Examination of Water and Wastewater”.

Nd= não detectado % de sólidos no lodo desidratado - 15,6 %

Análises efetuadas segundo a NBR 10,004 – Resíduos Sólidos.
3.5 Análises do solo

Para as análises físicas do solo foram coletadas amostras em quatro camadas de solo 0,00-0,05; 0,05-0,10; 0,10-0,20 e de 0,20-0,30 m. As amostras foram coletadas 2 anos após a implantação do experimento.

3.5.1 Análise das propriedades físico-hídricas do solo

3.5.1.1 Porosidade total, macroporosidade e microporosidade

Foram coletadas as amostras de solo com anel volumétrico em quatro camadas, 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m para determinação de macroporosidade, microporosidade e porosidade total, segundo Método da Mesa de Tensão, descrito em (EMBRAPA, 1997).

3.5.1.2 Densidade do solo

Utilizando-se as mesmas amostras, usadas para a determinação da porosidade do solo, determinou-se também a densidade do solo. A mesma foi avaliada pelo método do anel volumétrico (EMBRAPA, 1997).

3.5.1.3 Densidade de partículas

Para determinação da densidade de partículas foram coletadas amostras deformadas, em quatro camadas de solo, 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m. O Método empregado para a avaliação foi o do balão volumétrico usando álcool, conforme (EMBRAPA, 1997).
3.5.1.4 Textura do solo

A textura foi determinada pelo método da pipeta, sendo que as amostras deformadas foram secas ao ar e passadas em peneira de 2 mm de malha, para que pudesse ser realizada a dispersão das partículas e sedimentação (EMBRAPA, 1997).

3.5.1.5 Estabilidade de agregados em água

Para análise da estabilidade de agregados em água utilizou-se o método de Angers e Mehuys (1993) e, os resultados foram representados pelo diâmetro médio ponderado (DMP). Coletaram-se amostras indeformadas nas seguintes camadas de solo: 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m.

3.5.1.6 Retenção de água

As amostras de solo foram coletadas nas camadas de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m, usando-se anel volumétrico. A tensão mais baixa, isto é, 6 kPa foi empregada a mesa de tensão, segundo Kiehl (1979). Para as tensões de 50, 100 e 200 kPa, foi utilizada a câmara de Richards para determinar a retenção de água, seguindo-se a metodologia de Richards (1965).

3.5.1.7 Infiltração de água do solo

A taxa constante de infiltração e a infiltração acumulada foram avaliadas no campo utilizando-se o método de inundação com infiltrômetro de duplo cilindro concêntricos, descrito por Bertrand (1965). As dimensões do cilindro interno são de 0,254 m de diâmetro, bem como a altura, e as do externo, 0,381 m de diâmetro e 0,20 m de altura, o cilindro interno foi cravado no solo até 0,15 m de profundidade, e o externo a 0,10 m. Foram coletadas
amostras de solo para determinação do teor de água no solo, próximo dos locais que foram realizados os testes de infiltração.

3.6 Análise das propriedades químicas do solo

As amostras foram coletadas nas camadas de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m. Para a determinação das análises químicas, os teores de fósforo disponível e as bases tocáveis potássio, cálcio e magnésio foram caracterizados pelo método de extração com resina trocadora de íons. Determinou-se também o teor de matéria orgânica pelo método colorimétrico e o pH ClCo2, Al, H+Al. Com base nos resultados das análises químicas, foram calculadas a capacidade de troca catiônica (CTC) e a porcentagem de saturação por bases do solo (V%). As análises foram realizadas de acordo com a metodologia descrita em Raij e Quaggio (1983).

3.7 Análise da produção de massa verde e seca da braquiária

Para a braquiaria (Brachiaria decumbens) analisou-se a produção de massa verde e seca. Foram coletadas plantas contidas em 1 m², de dois pontos de cada parcela. As massas verde e seca foram determinadas por pesagem e a matéria seca levando-se a amostra para secagem em estufa a 60 – 70º C até atingir massa constante. Os dados obtidos foram expressos em kg ha⁻¹.

3.8 Análise do desenvolvimento das plantas de eucalipto

Para análise do desenvolvimento da planta de eucalipto foram avaliados a altura média das plantas e o DAP (diâmetro à altura do peito) aos 2,5 anos. A altura das plantas foi obtida com uso de um Forestor Vertex, composto por um hipsômetro e um emissor (transponder) (CAMPOS e LEITE, 2002). O DAP (diâmetro à altura do peito) foi determinado empregando-
3.9 Análise estatística

Para as propriedades físico-hídricas e químicas do solo se realizaram contrastes entre a área de vegetação natural e demais tratamentos; entre o solo degradado (exposto) e demais tratamentos; entre o solo cultivado com eucalipto e braquiária sem adubação mineral e lodo de esgoto e demais tratamentos; entre a área com adubação mineral e 60 Mg ha\(^{-1}\) de lodo de esgoto e, entre a área com 30 Mg ha\(^{-1}\) de lodo de esgoto e 60 Mg ha\(^{-1}\) de lodo de esgoto. Os resultados referentes às características das plantas foram verificados efetuando-se a análise de variância e teste de Tukey para as comparações de média ao nível de 5 \% de probabilidade. Foi usado o programa computacional SAS (SCHLOTZHAVER e LITTELL, 1997) para a realização da análise estatística.
4. RESULTADOS E DISCUSSÃO

4.1. Contrastes entre os tratamentos para as propriedades físico-hídricas do solo

Analizando os resultados apresentados na Tabela 8, observa-se que para a camada de 0,00-0,05 m, houve diferença significativa para o contraste entre o tratamento 1 e os demais somente para a estabilidade de agregados, retenção de água à tensão 100 e 200 kPa.

Esses resultados indicam que para a estabilidade de agregados, os tratamentos estudados não estão sendo promissores na recuperação desta propriedade no solo degradado. Resultados contrários foram observados por Logan et al. (1996), sendo que a aplicação de resíduos à base de lodo levaram a aumentos significativos na quantidade de agregados estáveis em água de tamanho maiores (> 5 mm, entre 2 e 5 mm, entre 1 e 2 mm e entre 0,5 e 1 mm) e reduções significativas na quantidade de agregados estáveis de tamanhos menores (entre 0,25 e 0,5 mm e < 0,25 mm).

Observando os valores médios da estabilidade de agregados (Tabela 9) pode-se verificar que os tratamentos de recuperação apresentaram menor valor de estabilidade de agregados, provavelmente devido o menor conteúdo de matéria orgânica no solo. A adição de matéria orgânica ao solo pode aumentar a agregação total e alterar a proporção de agregados estáveis em água (JORGE et al., 1991). Concordando com Kiehl (1979) que diz que a incorporação de matéria orgânica no solo provoca uma intensa atividade de microrganismos, os quais agem como cimentantes das partículas pelos seus micélios, ou pelas substâncias viscosas produzidas.

A adição de matéria orgânica pelos tratamentos visando à recuperação do solo estudado, até o momento não foi suficiente para causar alterações perceptíveis, pelo método de avaliação da estabilidade de agregados adotado, entre a condição natural do solo e a condição em recuperação.
Tabela 8. Teste de significância para os contrastes entre os tratamentos referentes às propriedades físico-hídricas do solo, para as camadas de 0,00-0,05 m e de 0,05-0,10 m.

<table>
<thead>
<tr>
<th>Propriedades</th>
<th>1xdemais</th>
<th>2xdemais</th>
<th>3xdemais</th>
<th>4x6</th>
<th>5x6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propriedades físico-hídricas do solo – camada de 0,00-0,05 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroporosidade</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Microporosidade</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Porosidade Total</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Dens. do solo</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Dens. De partículas</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Estab. de agregados</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>50 kPa</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>100 kPa</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>200 kPa</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Propriedades físico-hídricas do solo – camada de 0,05-0,10 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroporosidade</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Microporosidade</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Porosidade Total</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
</tr>
<tr>
<td>Dens. do solo</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
</tr>
<tr>
<td>Dens. De partículas</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Estab. de agregados</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>50 kPa</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>100 kPa</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>200 kPa</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Legenda: 1 = Cerrado, 2 = Solo exposto, 3 = Solo s/adubação, 4 = Adubação mineral, 5 = 30 Mg ha\(^{-1}\) de lodo de esgoto, 6 = 60 Mg ha\(^{-1}\) de lodo de esgoto.

* significativo ao nível de 5% de probabilidade; NS – não significativo, pelo teste F.
Tabela 9. Valores médios de diâmetro médio ponderado (DMP) de agregados estáveis em água para os tratamentos estudados nas camadas de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m.

<table>
<thead>
<tr>
<th>Camada de solo (m)</th>
<th>Tratamentos</th>
<th>0,00-0,05</th>
<th>0,05-0,10</th>
<th>0,10-0,20</th>
<th>0,20-0,30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerrado</td>
<td>4,44</td>
<td>4,03</td>
<td>4,00</td>
<td>3,59</td>
</tr>
<tr>
<td></td>
<td>Solo exposto</td>
<td>1,25</td>
<td>1,06</td>
<td>0,77</td>
<td>0,59</td>
</tr>
<tr>
<td></td>
<td>Solo s/ adubação</td>
<td>2,35</td>
<td>2,45</td>
<td>1,51</td>
<td>0,99</td>
</tr>
<tr>
<td></td>
<td>Ad. mineral</td>
<td>2,39</td>
<td>1,57</td>
<td>1,47</td>
<td>0,81</td>
</tr>
<tr>
<td></td>
<td>30 Mg ha⁻¹</td>
<td>2,52</td>
<td>1,53</td>
<td>1,24</td>
<td>0,76</td>
</tr>
<tr>
<td></td>
<td>60 Mg ha⁻¹</td>
<td>2,74</td>
<td>2,23</td>
<td>1,17</td>
<td>0,90</td>
</tr>
<tr>
<td></td>
<td>CV (%)</td>
<td>31,11</td>
<td>31,20</td>
<td>32,22</td>
<td>20,61</td>
</tr>
</tbody>
</table>

Já para a retenção de água à tensão 100 e 200 kPa, nesta camada, os tratamentos de recuperação também não estão sendo eficazes na estruturação do solo degradado, pois os mesmos proporcionaram maiores valores médios de retenção de água (Tabela 10). Essa maior retenção está relacionada com a compactação, ou seja, com a compactação do solo ocorre à redução da macroporosidade e porosidade total e aumento da densidade do solo, conseqüentemente ocorrendo aumento na microporosidade e na retenção de água.

Segundo Jorge et al. (1991) a transmissão de água é controlada basicamente pelo número de poros e sua distribuição e pela superfície específica do solo. Com o aumento da agregação, ocorre o aumento na porosidade ou alteração na relação entre a micro e a macroporosidade, refletindo-se na retenção da água.

Para as demais propriedades físico-hídricas não houve significância. Isto significa que os tratamentos de recuperação obtiveram um bom desempenho, já que a maioria das propriedades físico-hídricas se aproximaram das condições naturais do solo estudado.
Tabela 10. Valores médios de teor de água do solo (m³ m⁻³) retida às tensões de 50, 100 e 200 kPa para os tratamentos estudados nas camadas de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m.

<table>
<thead>
<tr>
<th>Camada de solo (m)</th>
<th>Tratamentos 0,00-0,05</th>
<th>0,05-0,10</th>
<th>0,10-0,20</th>
<th>0,20-0,30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Retenção de água à tensão de 50 kPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerrado</td>
<td>0,12</td>
<td>0,12</td>
<td>0,11</td>
<td>0,11</td>
</tr>
<tr>
<td>Solo exposto</td>
<td>0,16</td>
<td>0,17</td>
<td>0,18</td>
<td>0,18</td>
</tr>
<tr>
<td>Solo s/ adubação</td>
<td>0,15</td>
<td>0,15</td>
<td>0,17</td>
<td>0,15</td>
</tr>
<tr>
<td>Ad. mineral</td>
<td>0,13</td>
<td>0,15</td>
<td>0,15</td>
<td>0,16</td>
</tr>
<tr>
<td>30 Mg ha⁻¹</td>
<td>0,16</td>
<td>0,16</td>
<td>0,16</td>
<td>0,18</td>
</tr>
<tr>
<td>60 Mg ha⁻¹</td>
<td>0,16</td>
<td>0,16</td>
<td>0,16</td>
<td>0,16</td>
</tr>
<tr>
<td>CV (%)</td>
<td>19,62</td>
<td>14,71</td>
<td>7,38</td>
<td>9,41</td>
</tr>
<tr>
<td></td>
<td>Retenção de água à tensão de 100 kPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerrado</td>
<td>0,11</td>
<td>0,11</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Solo exposto</td>
<td>0,15</td>
<td>0,15</td>
<td>0,17</td>
<td>0,17</td>
</tr>
<tr>
<td>Solo s/ adubação</td>
<td>0,13</td>
<td>0,13</td>
<td>0,16</td>
<td>0,14</td>
</tr>
<tr>
<td>Ad. mineral</td>
<td>0,12</td>
<td>0,13</td>
<td>0,14</td>
<td>0,14</td>
</tr>
<tr>
<td>30 Mg ha⁻¹</td>
<td>0,13</td>
<td>0,14</td>
<td>0,14</td>
<td>0,15</td>
</tr>
<tr>
<td>60 Mg ha⁻¹</td>
<td>0,12</td>
<td>0,15</td>
<td>0,14</td>
<td>0,14</td>
</tr>
<tr>
<td>CV (%)</td>
<td>12,62</td>
<td>14,39</td>
<td>7,07</td>
<td>7,53</td>
</tr>
<tr>
<td></td>
<td>Retenção de água à tensão de 200 kPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerrado</td>
<td>0,10</td>
<td>0,10</td>
<td>0,09</td>
<td>0,10</td>
</tr>
<tr>
<td>Solo exposto</td>
<td>0,13</td>
<td>0,14</td>
<td>0,15</td>
<td>0,15</td>
</tr>
<tr>
<td>Solo s/ adubação</td>
<td>0,12</td>
<td>0,12</td>
<td>0,15</td>
<td>0,14</td>
</tr>
<tr>
<td>Ad. mineral</td>
<td>0,11</td>
<td>0,12</td>
<td>0,13</td>
<td>0,14</td>
</tr>
<tr>
<td>30 Mg ha⁻¹</td>
<td>0,12</td>
<td>0,13</td>
<td>0,13</td>
<td>0,14</td>
</tr>
<tr>
<td>60 Mg ha⁻¹</td>
<td>0,11</td>
<td>0,13</td>
<td>0,13</td>
<td>0,14</td>
</tr>
<tr>
<td>CV (%)</td>
<td>10,76</td>
<td>15,65</td>
<td>8,47</td>
<td>8,62</td>
</tr>
</tbody>
</table>
Por outro lado, no contraste do tratamento 2xdemais, isto é, solo exposto (degradado) versus tratamentos para recuperação do solo, não houve diferença significativa para a microporosidade, densidade de partículas, estabilidade de agregados e retenção de água à tensão 50, 100 e 200 kPa. Isto significa que os tratamentos de recuperação não estão atuando de forma eficiente na alteração dessas propriedades no solo degradado, pois estão iguais a condição do solo exposto. Para as demais propriedades físicas estudadas (macroporosidade, porosidade total e densidade do solo) houve diferença estatística.

Analisando a macroporosidade pode-se observar que os tratamentos de recuperação estão modificando positivamente esta propriedade no solo degradado na camada de 0,00-0,05 m, pois os mesmos proporcionaram maior valor de macroporos quando comparado com o solo exposto (Tabela 11). Resultados semelhantes foram observados por Melo et al. (2004), estudando o efeito da adição de lodo de esgoto em atributos físicos do solo, observaram que a incorporação de 50 Mg ha\(^{-1}\) de biossólido aumentou a macroporosidade na camada superficial do solo.

Observando os valores médios de macroporosidade (Tabela 11), verificou-se que os valores de macroporos para o solo exposto encontram-se abaixo do valor considerado crítico, o mesmo ocorrendo para os tratamentos com 30 Mg ha\(^{-1}\) de lodo de esgoto nas camadas de 0,05-0,10; 0,10-0,20 e 0,20-0,30 m e com 60 Mg ha\(^{-1}\) de lodo de esgoto na camada de 0,10-0,20 e 0,20-0,30 m. Este comportamento reflete a condição de degradação da estrutura, ou seja, a presença de camada compactada. Baver et al. (1972) e Greenland (1981) mencionam que para um bom crescimento das plantas o valor crítico de macroporosidade é de 0,10 m\(^3\) m\(^{-3}\). Já para Kiehl (1979) um solo ideal é aquele que apresenta 1/3 de macroporos dos 50 % ocupados pelos espaços vazios do solo, isto é 0,17 m\(^3\) m\(^{-3}\).
Tabela 11. Valores médios de macroporosidade e microporosidade para os tratamentos estudados nas camadas de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m.

<table>
<thead>
<tr>
<th>Camada de solo (m)</th>
<th>Macroporosidade do solo (m3 m$^{-3}$)</th>
<th>Microporosidade do solo (m3 m$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,00-0,05</td>
<td>0,05-0,10</td>
</tr>
<tr>
<td>Cerrado</td>
<td>0,13</td>
<td>0,10</td>
</tr>
<tr>
<td>Solo exposto</td>
<td>0,06</td>
<td>0,07</td>
</tr>
<tr>
<td>Solo s/adubação</td>
<td>0,16</td>
<td>0,10</td>
</tr>
<tr>
<td>Ad. mineral</td>
<td>0,13</td>
<td>0,10</td>
</tr>
<tr>
<td>30 Mg ha$^{-1}$</td>
<td>0,12</td>
<td>0,08</td>
</tr>
<tr>
<td>60 Mg ha$^{-1}$</td>
<td>0,15</td>
<td>0,14</td>
</tr>
<tr>
<td>CV (%)</td>
<td>40,67</td>
<td>37,90</td>
</tr>
<tr>
<td></td>
<td>0,29</td>
<td>0,30</td>
</tr>
<tr>
<td>Solo exposto</td>
<td>0,29</td>
<td>0,26</td>
</tr>
<tr>
<td>Solo s/adubação</td>
<td>0,28</td>
<td>0,29</td>
</tr>
<tr>
<td>Ad. mineral</td>
<td>0,28</td>
<td>0,28</td>
</tr>
<tr>
<td>30 Mg ha$^{-1}$</td>
<td>0,29</td>
<td>0,27</td>
</tr>
<tr>
<td>60 Mg ha$^{-1}$</td>
<td>0,28</td>
<td>0,28</td>
</tr>
<tr>
<td>CV (%)</td>
<td>12,34</td>
<td>8,69</td>
</tr>
</tbody>
</table>

Os tratamentos de recuperação também se mostraram eficazes na recuperação da porosidade do solo como pode ser observado na (Tabela 12). Os mesmos proporcionaram aumento significativo da porosidade total quando comparado com o solo degradado (exposto).

Este comportamento verificado discorda de Jorge et al. (1991) que, estudando um Latossolo Vermelho–Escuro argiloso, não observaram efeitos sobre a porosidade total determinada após 4 anos de aplicação de lodo de esgoto em doses de até 80 t ha$^{-1}$ em forma parcelada ou em uma única vez. Resultados semelhantes foram observados por Pagliai et al. (1981), os quais observaram aumento da porosidade do solo com a adição de lodo de esgoto.
Com relação à densidade do solo pode-se verificar que os tratamentos estão sendo úteis na recuperação desta propriedade na camada de 0,00-0,05 m, pois os mesmos diferiram da condição do solo exposto e apresentaram menor valor de densidade do solo.

Martens e Frankenberger Jr. (1992), em estudo com duração de 25 meses conduzido para avaliar os efeitos da incorporação de esterco de galinha, lodo de esgoto, palha de cevada e alfafa fresca sobre os atributos físicos de um solo de textura média, fizeram a aplicação de três doses destes materiais (25 Mg ha\(^{-1}\) cada, no início do experimento, após 10 meses e após 18 meses). Com relação à testemunha, os tratamentos diminuíram a densidade do solo.

Tabela 12. Valores médios de porosidade total e densidade do solo para os tratamentos estudados nas camadas de 0,00-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,30 m.

<table>
<thead>
<tr>
<th>Camada (m)</th>
<th>Tratamentos</th>
<th>0,00-0,05</th>
<th>0,05-0,10</th>
<th>0,10-0,20</th>
<th>0,20-0,30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Porosidade Total do solo (m(^3) m(^{-3}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerrado</td>
<td>0,42</td>
<td>0,41</td>
<td>0,38</td>
<td>0,37</td>
</tr>
<tr>
<td></td>
<td>Solo exposto</td>
<td>0,35</td>
<td>0,33</td>
<td>0,30</td>
<td>0,32</td>
</tr>
<tr>
<td></td>
<td>Solo s/ adubação</td>
<td>0,44</td>
<td>0,39</td>
<td>0,38</td>
<td>0,36</td>
</tr>
<tr>
<td></td>
<td>Ad. mineral</td>
<td>0,41</td>
<td>0,38</td>
<td>0,38</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td>30 Mg ha(^{-1})</td>
<td>0,41</td>
<td>0,36</td>
<td>0,35</td>
<td>0,34</td>
</tr>
<tr>
<td></td>
<td>60 Mg ha(^{-1})</td>
<td>0,43</td>
<td>0,42</td>
<td>0,34</td>
<td>0,36</td>
</tr>
<tr>
<td></td>
<td>CV (%)</td>
<td>7,02</td>
<td>6,87</td>
<td>9,56</td>
<td>7,63</td>
</tr>
<tr>
<td></td>
<td>Densidade do solo (kg dm(^{-3}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cerrado</td>
<td>1,40</td>
<td>1,44</td>
<td>1,51</td>
<td>1,51</td>
</tr>
<tr>
<td></td>
<td>Solo exposto</td>
<td>1,76</td>
<td>1,78</td>
<td>1,89</td>
<td>1,88</td>
</tr>
<tr>
<td></td>
<td>Solo s/ adubação</td>
<td>1,33</td>
<td>1,54</td>
<td>1,62</td>
<td>1,70</td>
</tr>
<tr>
<td></td>
<td>Ad. mineral</td>
<td>1,43</td>
<td>1,55</td>
<td>1,59</td>
<td>1,69</td>
</tr>
<tr>
<td></td>
<td>30 Mg ha(^{-1})</td>
<td>1,47</td>
<td>1,61</td>
<td>1,68</td>
<td>1,76</td>
</tr>
<tr>
<td></td>
<td>60 Mg ha(^{-1})</td>
<td>1,36</td>
<td>1,48</td>
<td>1,66</td>
<td>1,68</td>
</tr>
<tr>
<td></td>
<td>CV (%)</td>
<td>6,49</td>
<td>5,51</td>
<td>6,84</td>
<td>5,32</td>
</tr>
</tbody>
</table>
Para o contraste do tratamento 3xdemais, isto é, tratamento com o solo cultivado com eucalipto sem adubação (mineral e/ou orgânica) versus solo cultivado com eucalipto usando adubação mineral e adubação orgânica, não houve significância para todas as propriedades físico-hídricas estudadas, significando que os tratamentos de recuperação estão agindo de forma semelhante ao tratamento sem adubação (mineral ou orgânica) na recuperação do solo degradado. O mesmo ocorrendo para os contrastes entre os tratamentos de recuperação (4x6 e 5x6).

Para a camada de 0,05-0,10 m (Tabela 8) verificou-se que entre o contraste do tratamento 1xdemais houve diferença estatística para a densidade do solo, estabilidade de agregados e retenção de água à tensão de 50, 100 e 200 kPa. Com relação à densidade do solo notou-se que os tratamentos de recuperação não alteraram esta propriedade na camada de 0,05-0,10 m no solo degradado, pois os mesmos diferiram da condição do cerrado.

Analisando os valores médios de densidade do solo (Tabela 12) observou-se que os tratamentos de recuperação apresentaram maior valor de densidade do solo quando comparado com a vegetação natural de cerrado, reforçando a hipótese de que os tratamentos com degradação da estrutura apresentaram maiores valores de densidade do solo. Estes resultados estão de acordo com Alves (1992) e Veiga et al. (1994) que observaram em camadas compactadas, aumento da densidade do solo, resultante do aumento da quantidade de sólidos em relação ao volume de poros e nessa camada predomina os microporos nos quais o movimento da água e do ar é dificultado diminuindo dessa forma a drenagem interna do solo comandada pela estrutura.

O comportamento referente à estabilidade de agregados em água na camada de 0,05-0,10 m foi semelhante ao da camada de 0,00-0,05 m, ou seja, os tratamentos estudados não foram eficazes na recuperação desta propriedade física no solo degradado, devido os mesmos terem apresentado menor teor de matéria orgânica no solo. A matéria orgânica na agregação
do solo é um processo dinâmico, sendo necessário o acréscimo contínuo de material orgânico para manter a estrutura adequada ao desenvolvimento das plantas (CAMPOS et al., 1995).

Para a retenção de água à tensão de 50, 100 e 200 kPa pode-se observar que os tratamentos estudados não modificaram esta propriedade na camada de 0,05-0,10 m, pois os mesmos apresentaram maior valor de retenção de água (Tabela 10). Reforçando a hipótese de que também nessa camada de solo está ocorrendo à compactação no solo degradado.

Melo et al. (2004) estudando o efeito da aplicação de lodo de esgoto em atributos físicos de latossolos, não observaram diferenças na retenção de água, em todas as tensões, entre profundidades e até a dose de 50,0 Mg ha\(^{-1}\) de biossólido, nos dois solos estudados, o mesmo comportamento foi verificado por Jorge et al. (1991), que também não obtiveram alterações na retenção de água em Latossolo Vermelho argiloso nas tensões de 0,033 e 0,1 MPa, com a aplicação de 20,0 Mg ha\(^{-1}\) ano\(^{-1}\) de lodo de esgoto, comparado à testemunha.

Para as demais propriedades físicas não houve significância, ou seja, as mesmas não diferiram da condição do cerrado.

No contraste do tratamento 2xdemais houve diferença significativa para porosidade total, densidade do solo e estabilidade de agregados significando que estas propriedades físicas estão sendo alteradas na camada de 0,05-0,10 m, pois diferiram da condição do solo exposto. Comportamento semelhante ocorreu na camada de 0,00-0,05 m, com exceção da estabilidade de agregados.

Para o contraste do tratamento 3xdemais e 4x6 não houve significância para as propriedades do solo estudadas, ou seja, as propriedades físico-hídricas do solo estudado não estão sendo sensíveis, nesta camada de solo, para detectar diferenças entre os tratamentos de recuperação.
Entre os tratamentos de recuperação, verificou-se que para o contraste 5x6, houve diferença significativa somente para porosidade total e densidade do solo na camada de 0,05-0,10 m. Neste caso o efeito da matéria orgânica presente no lodo de esgoto (30 e 60 Mg ha\(^{-1}\)) refletiu positivamente na densidade e porosidade do solo, sendo que a dose com 60 Mg ha\(^{-1}\) de lodo de esgoto proporcionou melhor efeito.

Verificando-se os dados obtidos na (Tabela 13) observou-se que para a camada de 0,10-0,20 m no contraste do tratamento 1xdemais não houve significância para macroporosidade, porosidade total e densidade de partícula. Isto significa que para estas propriedades o solo degradado está sendo recuperado, pois não diferiram da condição natural de cerrado e analisando a microporosidade, densidade do solo, estabilidade de agregados e retenção de água à tensão 50, 100 e 200 kPa verificou-se que houve diferença significativa.

Para a microporosidade notou-se que os tratamentos estudados não estão atuando de forma eficiente na recuperação desta propriedade no solo degradado, concordando com Melo et al. (2004). Os autores citados estudaram o efeito da aplicação de lodo de esgoto em atributos físicos de dois latossolos e verificaram que a porosidade total e microporosidade não diferiram entre as camadas e doses de lodo aplicadas nos dois tipos de solo. Resultados que também corroboram com Jorge et al. (1991) que não encontraram diferenças na microporosidade com a aplicação de 20 Mg ha\(^{-1}\) ano\(^{-1}\) de lodo de esgoto, durante quatro anos, em Latossolo Vermelho argiloso.

Os tratamentos de recuperação também não estão sendo eficazes na modificação da densidade do solo e retenção de água à tensão 50, 100 e 200 kPa no solo degradado, pois os mesmos apresentaram maior valor de densidade do solo e retenção de água comparado ao cerrado (Tabelas 12 e 10) respectivamente. Reforçando a hipótese de compactação do solo na camada de 0,10-0,20 m. Segundo Meredith e Patrick JR (1961) a compactação ocorre com o
aumento da sua densidade do solo, e com a conseqüente diminuição da porosidade total e da macroporosidade.
Tabela 13. Teste de significância para os contrastes entre os tratamentos referentes às propriedades físico-hídricas do solo, para as camadas de 0,10-0,20 m e de 0,20-0,30 m.

<table>
<thead>
<tr>
<th>Propriedades</th>
<th>Contrastes entre tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1xdemais</td>
</tr>
<tr>
<td>Propriedades físico-hídricas do solo – camada de 0,10-0,20 m</td>
<td></td>
</tr>
<tr>
<td>Macroporosidade</td>
<td>NS</td>
</tr>
<tr>
<td>Microporosidade</td>
<td>*</td>
</tr>
<tr>
<td>Porosidade Total</td>
<td>NS</td>
</tr>
<tr>
<td>Dens. do solo</td>
<td>*</td>
</tr>
<tr>
<td>Dens. De partículas</td>
<td>NS</td>
</tr>
<tr>
<td>Estab. de agregados</td>
<td></td>
</tr>
<tr>
<td>50 kPa</td>
<td>*</td>
</tr>
<tr>
<td>100 kPa</td>
<td>*</td>
</tr>
<tr>
<td>200 kPa</td>
<td>*</td>
</tr>
</tbody>
</table>

| **Propriedades físico-hídricas do solo – camada de 0,20-0,30 m** |
Macroporosidade	NS	*	NS	NS	NS
Microporosidade	NS	NS	NS	NS	NS
Porosidade Total	NS	*	NS	NS	NS
Dens. do solo	*	*	NS	NS	NS
Dens. De partículas	NS	NS	NS	NS	NS
Estab. de agregados	*	NS	NS	NS	NS
50 kPa	*	*	NS	NS	NS
100 kPa	*	*	NS	NS	NS
200 kPa	*	*	NS	NS	NS

Legenda: 1= Cerrado, 2= Solo exposto, 3= Solo s/adubação, 4= Adubação mineral, 5= 30 Mg ha⁻¹ de lodo de esgoto, 6= 60 Mg ha⁻¹ de lodo de esgoto *

* significativo ao nível de 5% de probabilidade; NS – não significativo, pelo teste F.
Pelos resultados observados na (Tabela 9) para a camada de 0,10-0,20 m os tratamentos de recuperação não estão sendo promissores na alteração da estabilidade de agregados no solo degradado, os mesmos proporcionaram menor valor de agregação, pelo fato da menor adição de matéria orgânica.

De acordo com Allison, 1973; Harris et al., 1966 a vegetação e seus resíduos protegem os agregados da superfície contra a desagregação pelo impacto da chuva e variações bruscas de umidade. Ao mesmo tempo, o contínuo fornecimento de material orgânico, quer por secreções radiculares, quer por renovação do sistema radicular e da parte aérea ou dos resíduos de colheita, serve de fonte de energia para a atividade microbiana, cujos subprodutos, constituídos de moléculas orgânicas em diversas fases de decomposição, atuam como agentes de formação e estabilização dos agregados. Ao lado desses benefícios, manifesta-se também o efeito mecânico e físico das raízes sobre a formação dos agregados.

Para o contraste do tratamento 2xdemais (Tabela 13) na camada de 0,10-0,20 m, houve diferença significativa para macroporosidade, microporosidade, porosidade total, densidade do solo e retenção de água à tensão 50, 100 e 200 kPa. O resultado observado é promissor, ou seja, indica que os tratamentos de recuperação estão alterando o solo degradado, uma vez que as maioria das propriedades físico-hídricas estudadas estão diferindo da condição do solo exposto.

No contraste do tratamento sem adubação x demais se observou que não houve significância em todas as propriedades físico-hídricas estudadas, ou seja, os tratamentos de recuperação estão agindo de forma semelhante ao tratamento sem adubação na recuperação do solo degradado. Analisando os contrastes entre os tratamentos de recuperação (4x6 e 5x6), na Tabela 13, verificou-se que não houve diferença significativa, indicando que todos os tratamentos de recuperação estão sendo semelhantes para a modificação estrutural do solo degradado na camada de 0,10-0,20 m.
Observa-se na Tabela 13 que para a camada de 0,20-0,30 m no contraste do tratamento cerrado x demais não houve diferença para macroporosidade, microporosidade, porosidade total e densidade de partículas, significando que estas propriedades estão sendo alteradas no solo degradado. Para densidade do solo, estabilidade de agregados e retenção de água a tensão de 50, 100 e 200 kPa, houve significância.

Analisando os dados das (Tabelas 12 e 10) pode-se verificar que os tratamentos estudados não estão modificando a densidade do solo e retenção de água no solo degradado, como ocorreu nas demais camadas os mesmos proporcionaram maior valor comparando ao cerrado. Constatando a hipótese de compactação do solo. Nesta camada a estabilidade de agregados também não está sendo modificada pelos tratamentos de recuperação, devido os mesmos apresentarem menor teor de matéria orgânica.

Por outro lado no contraste 2xdemais houve significância para macroporosidade, porosidade total, densidade do solo e retenção de água à tensão 50, 100 e 200 kPa, indicando que para essa camada de solo estas propriedades estão sendo alteradas, pois diferenciaram da condição do solo exposto.

No contraste do tratamento 3xdemais, na camada de 0,20-0,30 m, observou-se que não houve diferença estatística para as propriedades físico-hídricas estudadas, significando que os tratamentos de recuperação estão se comportando de forma semelhante ao tratamento sem adubação. Nos contrastes 4x6 e 5x6 (Tabela 13, camada de 0,20-0,30 m) não houve diferença para as propriedades do solo estudadas, significando que os tratamentos de recuperação obtiveram efeitos semelhantes na estruturação do solo degradado.

Nos contrastes cerrado com os demais tratamentos (Tabela 14) pode-se observar que houve significância tanto para a infiltração acumulada como para as taxas constantes de infiltração, indicando que os tratamentos estudados não estão sendo promissores na recuperação destas propriedades no solo degradado, pois diferiram da condição natural de
cerrado. Esse comportamento se deve provavelmente ao processo de compactação, que consequentemente reduz a porosidade e densidade do solo, afetando assim o processo de infiltração.

Tabela 14. Teste de significância para os contrastes entre os tratamentos referentes ao movimento de água no solo.

<table>
<thead>
<tr>
<th>Propriedades hídricas do solo</th>
<th>Contrastes entre tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inf. acumulada</td>
<td>* NS NS NS NS NS</td>
</tr>
<tr>
<td>T. constante de infiltração</td>
<td>* NS NS NS NS NS</td>
</tr>
</tbody>
</table>

Legenda: 1 = Cerrado, 2 = Solo exposto, 3 = Solo s/adubação, 4 = Adubação mineral, 5 = 30 Mg ha\(^{-1}\) de lodo de esgoto, 6 = 60 Mg ha\(^{-1}\) de lodo de esgoto

Veiga e Amado (1994) relatam que a infiltração de água no solo é uma das melhores medidas da qualidade e da estabilidade dos agregados e, consequentemente dos espaços porosos, pois uma vez modificado o arranjo das partículas do solo, provoca diminuição no tamanho dos poros, especialmente daqueles de tamanhos maiores (macroporos), com isso, reduzindo a área da seção transversal para o fluxo de água, afetando assim o processo de infiltração. Salienta ainda que a capacidade de infiltração de água no solo é menor no solo mais intensamente preparado, em função da formação de camada compactada e das condições de superfície, que favorecem a formação de selo e crosta superficial.

Por outro lado, no contraste do tratamento 2xdemais não houve diferença significativa para os movimentos de água estudados, significando que os mesmos no solo degradado não estão sendo alterados.

No contraste do tratamento sem adubação x demais se observou que não houve diferença significativa, ou seja, os tratamentos de recuperação estão tendo efeito semelhante ao tratamento sem adubação na recuperação do movimento de água no solo degradado.
Nos contrastes 4x6 e 5x6 não houve diferença para o movimento de água do solo significando que os tratamentos de recuperação usando lodo de esgoto obtiveram efeitos semelhantes na estruturação do solo degradado. Logan et al. (1996) verificaram que a aplicação de grandes quantidades de lodo de esgoto não alterou as propriedades que influenciam a transmissão de água no solo, independente da textura.

Observando os valores médios da infiltração acumulada e taxas constantes de infiltração (Tabela 15), pode verificar que ao contrário do teste de significância para os contrastes (Tabela 14), os valores médios indicaram que os tratamentos de recuperação estão alterando essas propriedades no solo degradado, pois os mesmos proporcionaram maior valor quando comparado ao solo exposto. Esse resultado observado é devido ao fato, da alta variação do coeficiente de variação (CV) que não detectar a diferença entre os tratamentos estudados quando se analisa o movimento de água no solo.

Tabela 15. Valores médios da infiltração acumulada (IA) e taxa constante de infiltração (TCI) para os tratamentos estudados.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>IA (cm h(^{-1}))</th>
<th>TCI (cm h(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerrado</td>
<td>107,40</td>
<td>123,30</td>
</tr>
<tr>
<td>Solo exposto</td>
<td>5,93</td>
<td>4,15</td>
</tr>
<tr>
<td>Solo s/adubação</td>
<td>28,88</td>
<td>19,30</td>
</tr>
<tr>
<td>Ad. Mineral</td>
<td>12,33</td>
<td>7,80</td>
</tr>
<tr>
<td>30 Mg ha(^{-1})</td>
<td>15,48</td>
<td>8,80</td>
</tr>
<tr>
<td>60 Mg ha(^{-1})</td>
<td>14,13</td>
<td>9,30</td>
</tr>
<tr>
<td>CV (%)</td>
<td>46,08</td>
<td>52,52</td>
</tr>
</tbody>
</table>
4.2. Contrastes entre os tratamentos para as propriedades químicas do solo

De acordo com a Tabela 16 verificou-se que na camada de 0,00-0,05 m houve significância estatística nos contrastes feitos entre o tratamento 1 e os demais. Para K e CTC não houve significância, indicando que os tratamentos de recuperação estão sendo promissores na recuperação das propriedades químicas do solo, pois a maioria das propriedades diferiu da condição do cerrado.

Analizando os valores médios de P (Tabela 17) na camada de 0,00-0,05 m, foi possível constatar que os tratamentos de recuperação utilizando lodo de esgoto aumentaram significativamente o seu teor no solo. O aumento significativo do fósforo no solo pode ser explicado pela disponibilização deste elemento com a aplicação do lodo de esgoto, uma vez que com as doses de 30 e 60 Mg ha\(^{-1}\) foram adicionados cerca de 563 e 1127 kg de fósforo.

Os valores encontrados concordam com Colodro (2005) que estudando a recuperação do solo na mesma área da pesquisa observou que as doses de 30 e 60 Mg ha\(^{-1}\) aumentaram o teor de fósforo no solo. Resultados semelhantes foram observados por Trannin, Siqueira e Moreira (2005), no qual observaram que a dose de 10 Mg ha\(^{-1}\) de lodo de esgoto em base seca, aumentou a disponibilidade de fósforo no solo, proporcionando produtividade de milho equivalente à obtida com a adubação mineral completa.
Tabela 16. Teste de significância para os contrastes entre os tratamentos referentes às propriedades químicas do solo, para as camadas de 0,00-0,05 m e de 0,05-0,10 m.

<table>
<thead>
<tr>
<th>Propriedades químicas do solo – camada de 0,00-0,05 m</th>
<th>Contrastes entre tratamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1xdemais</td>
</tr>
<tr>
<td>P</td>
<td>*</td>
</tr>
<tr>
<td>M.O</td>
<td>*</td>
</tr>
<tr>
<td>pH</td>
<td>*</td>
</tr>
<tr>
<td>K</td>
<td>NS</td>
</tr>
<tr>
<td>Ca</td>
<td>*</td>
</tr>
<tr>
<td>Mg</td>
<td>*</td>
</tr>
<tr>
<td>H + Al</td>
<td>*</td>
</tr>
<tr>
<td>Al</td>
<td>*</td>
</tr>
<tr>
<td>SB</td>
<td>*</td>
</tr>
<tr>
<td>CTC</td>
<td>NS</td>
</tr>
<tr>
<td>V</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propriedades químicas do solo – camada de 0,05-0,10 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>M.O</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>Ca</td>
</tr>
<tr>
<td>Mg</td>
</tr>
<tr>
<td>H + Al</td>
</tr>
<tr>
<td>Al</td>
</tr>
<tr>
<td>SB</td>
</tr>
<tr>
<td>CTC</td>
</tr>
<tr>
<td>V</td>
</tr>
</tbody>
</table>

Legenda: 1= Cerrado, 2= Solo exposto, 3= Solo s/adubação, 4= Adubação mineral, 5= 30 Mg ha⁻¹ de lodo de esgoto, 6= 60 Mg ha⁻¹ de lodo de esgoto. * significativo ao nível de 5 % de probabilidade; NS – não significativo, pelo teste F.
Tabela 17. Valores médios de P, M.O., pH, K, Ca, Mg, H+Al, Al, SB, CTC e V%, para os tratamentos estudados nas camadas de 0,00-0,05 e 0,05-0,10 m.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>P (mg dm(^{-3}))</th>
<th>M.O. (g dm(^{-3}))</th>
<th>pH</th>
<th>K (CaCl(_2))</th>
<th>Ca</th>
<th>Mg</th>
<th>H+Al (mmol dm(^{-3}))</th>
<th>Al</th>
<th>SB</th>
<th>CTC</th>
<th>V (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0,00-0,05 m</td>
<td></td>
</tr>
<tr>
<td>Cerrado</td>
<td>3,25</td>
<td>22,25</td>
<td>4,07</td>
<td>0,57</td>
<td>2,25</td>
<td>2,75</td>
<td>27,25</td>
<td>9,25</td>
<td>5,47</td>
<td>32,72</td>
<td>18,00</td>
</tr>
<tr>
<td>S. exposto</td>
<td>1,00</td>
<td>2,00</td>
<td>4,37</td>
<td>0,20</td>
<td>2,50</td>
<td>1,00</td>
<td>15,50</td>
<td>2,75</td>
<td>3,70</td>
<td>19,20</td>
<td>19,00</td>
</tr>
<tr>
<td>S/ adubação</td>
<td>1,00</td>
<td>5,75</td>
<td>5,77</td>
<td>0,60</td>
<td>5,50</td>
<td>6,00</td>
<td>12,50</td>
<td>0,00</td>
<td>11,95</td>
<td>24,45</td>
<td>48,50</td>
</tr>
<tr>
<td>Ad. mineral</td>
<td>2,00</td>
<td>7,25</td>
<td>6,07</td>
<td>0,97</td>
<td>7,75</td>
<td>8,75</td>
<td>10,50</td>
<td>0,00</td>
<td>17,47</td>
<td>27,97</td>
<td>61,25</td>
</tr>
<tr>
<td>30 Mg ha(^{-1})</td>
<td>65,50</td>
<td>12,25</td>
<td>5,27</td>
<td>0,67</td>
<td>7,50</td>
<td>9,25</td>
<td>16,00</td>
<td>0,00</td>
<td>17,32</td>
<td>33,32</td>
<td>51,75</td>
</tr>
<tr>
<td>60 Mg ha(^{-1})</td>
<td>163,25</td>
<td>14,50</td>
<td>5,25</td>
<td>1,27</td>
<td>10,50</td>
<td>11,75</td>
<td>18,75</td>
<td>0,50</td>
<td>23,77</td>
<td>42,52</td>
<td>55,50</td>
</tr>
<tr>
<td>CV (%)</td>
<td>55,71</td>
<td>22,31</td>
<td>4,68</td>
<td>36,14</td>
<td>32,05</td>
<td>30,92</td>
<td>27,64</td>
<td>44,11</td>
<td>26,00</td>
<td>19,41</td>
<td>17,29</td>
</tr>
<tr>
<td>0,05-0,10 m</td>
<td></td>
</tr>
<tr>
<td>Cerrado</td>
<td>2,00</td>
<td>12,50</td>
<td>4,05</td>
<td>0,40</td>
<td>3,00</td>
<td>1,75</td>
<td>27,75</td>
<td>9,50</td>
<td>5,15</td>
<td>32,90</td>
<td>14,50</td>
</tr>
<tr>
<td>S. exposto</td>
<td>1,00</td>
<td>1,25</td>
<td>4,37</td>
<td>0,12</td>
<td>1,75</td>
<td>0,75</td>
<td>15,00</td>
<td>2,50</td>
<td>2,37</td>
<td>17,37</td>
<td>13,50</td>
</tr>
<tr>
<td>S/ adubação</td>
<td>1,00</td>
<td>5,25</td>
<td>6,02</td>
<td>0,22</td>
<td>7,75</td>
<td>6,00</td>
<td>11,00</td>
<td>0,00</td>
<td>14,02</td>
<td>25,02</td>
<td>54,50</td>
</tr>
<tr>
<td>Ad. mineral</td>
<td>1,00</td>
<td>5,00</td>
<td>6,27</td>
<td>0,37</td>
<td>11,00</td>
<td>9,75</td>
<td>10,00</td>
<td>0,00</td>
<td>21,07</td>
<td>31,07</td>
<td>64,25</td>
</tr>
<tr>
<td>30 Mg ha(^{-1})</td>
<td>55,25</td>
<td>8,50</td>
<td>4,97</td>
<td>0,22</td>
<td>6,25</td>
<td>4,00</td>
<td>15,75</td>
<td>0,50</td>
<td>10,82</td>
<td>26,57</td>
<td>40,00</td>
</tr>
<tr>
<td>60 Mg ha(^{-1})</td>
<td>150,75</td>
<td>11,25</td>
<td>4,95</td>
<td>0,50</td>
<td>11,00</td>
<td>7,00</td>
<td>20,50</td>
<td>1,00</td>
<td>18,20</td>
<td>38,70</td>
<td>47,00</td>
</tr>
<tr>
<td>CV (%)</td>
<td>65,89</td>
<td>27,83</td>
<td>5,61</td>
<td>22,93</td>
<td>51,40</td>
<td>55,66</td>
<td>4,76</td>
<td>40,57</td>
<td>49,72</td>
<td>21,21</td>
<td>22,50</td>
</tr>
</tbody>
</table>
Guedes (2005) observou em uma área cultivada com eucalipto que recebeu lodo de esgoto um aumento de 10 vezes no teor de fósforo quando comparando com área que recebeu apenas adubação mineral.

Para a matéria orgânica verificou-se que na camada de 0,00-0,05 m (Tabela 17) os tratamentos com lodo de esgoto foram os que proporcionaram maior valor entre os tratamentos de recuperação estudados, concordando com Colodro (2005) que constatou que a adição de lodo promoveu aumento na matéria orgânica do solo, entretanto não houve diferença entre as duas doses utilizadas. Souza et al. (2005) observou que a adição de lodo proporcionou incrementos significativos nos conteúdos de MO na camada superficial. Wei et al. (1985) e Albiach et al. (2001) encontraram aumentos significativos de MO com a adição de lodo de esgoto. Porém, Melo (2002) não verificou aumento do teor de MO após três anos de aplicação de biossólido.

Os teores dos materiais orgânicos encontrados são considerados baixos quando se compara à condição natural desse solo não degradado, que deveria estar com 16 a 30 g dm$^{-3}$, segundo Raij et al. (1997).

Com relação ao pH (Tabela 17) pode-se verificar que os tratamentos de recuperação aumentaram o valor do mesmo no solo degradado comparado com o cerrado. Resultados semelhantes foram observados por Resende (2005), sendo que a adição de 20 Mg ha$^{-1}$ de lodo de esgoto aumentou o valor de pH na área cultivada com eucalipto.

Para o Ca e Mg (Tabela 17) observou-se que na camada de 0,00-0,05 m os tratamentos de recuperação estão sendo eficientes, principalmente os com lodo de esgoto, pois os mesmos proporcionaram maiores teores desses elementos no solo. Oliveira et al. (1995) também verificaram aumento dos teores de Ca e Mg no tratamento que recebeu 20 Mg ha$^{-1}$ de lodo de esgoto. Porém, Chiba (2005) não observou aumento nos teores de Ca e Mg em áreas adubadas com 14 e 16 Mg ha$^{-1}$ de lodo de esgoto cultivado com cana-de-açúcar.
Para o alumínio trocável verificou-se que os tratamentos estudados estão sendo eficazes na alteração desse elemento no solo degradado, os mesmos promoveram redução significativa no seu teor. Observando os valores do H+Al (ácidez potencial) verificou-se que os tratamentos de recuperação reduziram o seu teor no solo degradado, significando que os mesmos estão alterando esse elemento. Resultados semelhantes foram observados por Rocha et al. (2004), em área cultivada com eucalipto com doses crescentes de lodo de esgoto (5, 10, 15 e 20 Mg ha\(^{-1}\) e complemento com potássio).

Analisando os dados referentes à SB e V% (Tabela 17) observou que na camada de 0,00-0,05 m os tratamentos com de lodo de esgoto e com adubação mineral proporcionaram maiores valores. Esses resultados são em virtude dos aumentos dos teores trocáveis de Ca, Mg e K proporcionado pela aplicação de lodo de esgoto e adubação mineral.

Entre os contrastes do tratamento 2 com os demais não houve diferença apenas para a acidez potencial (H+Al), reforçando a hipótese de que nesta camada está ocorrendo a recuperação do solo degradado, já que a maioria das propriedades químicas diferiram da condição do solo exposto.

Nos contrastes do tratamento sem adubação com os demais tratamentos de recuperação, pode-se observar que não houve diferença significativa para pH, H+Al, Al e V%, indicando que para essas propriedades químicas os tratamentos de recuperação estão se comportando de forma semelhante ao tratamento sem adubação. Para as demais propriedades houve significância, indicando que os tratamentos com adubação mineral e principalmente os tratamentos com lodo de esgoto estão atuando positivamente sobre essas propriedades, pois os mesmos promoveram aumentos significativos nos seus teores como pode ser observado na (Tabela 17).

Para o contraste 4x6 não houve diferença significativa para o K, Ca, Mg, Al e V%, significando que o tratamento com adubação mineral está se comportando de forma
semelhante ao tratamento com 60 Mg ha\(^{-1}\) na recuperação dessas propriedades no solo degradado.

Já para o contraste 5x6 não houve significância para M.O., pH, Mg, H+Al, Al e V%, para as demais propriedades químicas houve significância. Analisando o P, K, Ca, SB e CTC verificou-se que o tratamento com 60 Mg ha\(^{-1}\) de lodo de esgoto promoveu aumento desses elementos comparado com o tratamento com 30 Mg ha\(^{-1}\) (Tabela 17). Resultados semelhantes foram verificados por Berton et al. (1989) e Perecin Júnior (2005).

Verificando a Tabela 16 observou-se que para a camada de 0,05-0,10 m no contraste do tratamento cerrado x demais não houve diferença significativa somente para a CTC. Nessa camada os tratamentos de recuperação também estão sendo eficientes na recuperação das propriedades químicas do solo degradado, já que a maioria das propriedades diferiu da condição do cerrado.

Como na camada de 0,00-0,05m os tratamentos de recuperação utilizando lodo de esgoto foram os que proporcionaram maior teor de P (Tabela 17), concordando Nascimento et al. (2004) que constatou que a aplicação de 40 e 60 Mg ha\(^{-1}\) de lodo proporcionaram aumentos significativos no teor de P.

Analisando os valores médios de matéria orgânica na Tabela 17 constatou-se que também nesta camada os tratamentos de recuperação, principalmente com lodo de esgoto, proporcionaram maior teor de material orgânico.

Com relação ao pH, os tratamentos estudados estão sendo eficientes, pois os mesmos aumentaram o valor desse elemento no solo degradado. Verificando os valores médios de Ca, K e Mg observou-se que nesta camada os tratamentos de recuperação também estão sendo promissores, pois os mesmos proporcionaram aumento desses elementos no solo degradado.

Para o alumínio trocável observou-se que nesta camada os tratamentos estudados também reduziram o seu teor comparado ao cerrado. De acordo com Testa et al. (1992) solos
ácidos brasileiros podem apresentar Al em teores que excedem a capacidade de tolerância da maioria das culturas e baixos níveis trocáveis de cátions básicos, características estas que podem ser corrigidos nos horizontes superficiais pela calagem.

Analisando a H+Al (acidez potencial) verificou-se que os tratamentos utilizados estão modificando esse elemento no solo degradado, pois os mesmos reduziram o seu teor. Com relação à SB e V% (Tabela 17) observou que na camada de 0,05-0,10 m os tratamentos com de lodo de esgoto e com adubação mineral proporcionaram maiores valores. Devido aos aumentos dos teores trocáveis de Ca, Mg e K proporcionado pelo lodo e adubação mineral.

Por outro lado no contraste 2xdemais não houve significância apenas para a acidez potencial (H+Al), porém para as demais propriedades estudadas houve diferenças significativas, indicando que estas propriedades químicas estão sendo alteradas pelos tratamentos de recuperação, pois diferenciaram da condição do solo exposto.

Para o contraste do tratamento sem adubação x demais se observou que não houve diferença significativa para Ca, Mg, Al, SB, CTC e V%, ou seja, os tratamentos de recuperação estão agindo de forma semelhante ao tratamento sem adubação na recuperação dessas propriedades no solo degradado, para as demais propriedades houve significância, indicando que para estas propriedades químicas os tratamentos com adubação mineral e com lodo de esgoto estão sendo promissores para a modificação do solo degradado.

Nos contrastes entre os tratamentos de recuperação, verificou-se que para o contraste 4x6, houve diferença significativa para P, M.O., pH, K, H+Al e V%, analisando os valores médios da Tabela 17 pode-se verificar que o tratamento com 60 Mg ha⁻¹ de lodo de esgoto esta sendo o mais promissor na alteração dessas propriedades, o mesmo promoveu aumento significativo desses elementos comparado ao tratamento com adubação mineral. Para o contraste 5x6 houve significância para P, K, H+Al e CTC, sendo que o tratamento com 60 Mg
ha\(^{-1}\) de lodo de esgoto promoveu maior alteração desses elementos no solo degradado, devido a maior dose aplicada.

Para a camada de 0,10-0,20 m (Tabela 18) pode-se verificar que no contraste do tratamento 1 com os demais não houve significância somente para P e CTC, esse resultado é promissor, pois os tratamentos de recuperação estão alterando as propriedades químicas do solo degradado.

Verificando os valores médios para a matéria orgânica (Tabela 19) na camada de 0,10-0,20 m, pode-se observar que os tratamentos estudados não proporcionaram aumento no seu teor, esse comportamento era o esperado, pois com o aumento da profundidade ocorre a diminuição da matéria orgânica.

Com relação ao pH, verificaram-se como nas demais camadas que os tratamentos utilizados proporcionaram aumento do mesmo no solo degradado. Para K, Ca e Mg (Tabela 19) constatou-se que os tratamentos estudados estão sendo eficientes na recuperação desses elementos no solo degradado, pois a aplicação de adubação mineral e lodo de esgoto aumentaram o teor desses elementos na camada de 0,10-0,20 m.

Para o Al e H+Al (acidez potencial) observou-se que essas propriedades estão sendo alteradas no solo degradado pelos tratamentos de recuperação, ou seja, esses tratamentos proporcionaram menor valor comparado ao cerrado. Já para a SB e V% verificou que as mesmas também estão sendo alteradas pelos tratamentos com adubação mineral e lodo de esgoto.

No contraste do tratamento 2x demais não houve diferença significativa para P, K e H+Al, para as demais propriedades houve significância, ou seja, indica que os tratamentos de recuperação estão modificando o solo degradado, uma vez que a maioria das propriedades químicas estudadas está diferindo da condição do solo exposto.
Tabela 18. Teste de significância para os contrastes entre os tratamentos referentes às propriedades químicas do solo, para as camadas de 0,10-0,20 m e de 0,20-0,30 m.

<table>
<thead>
<tr>
<th>Propriedades químicas do solo – camada de 0,10-0,20 m</th>
<th>Propriedades</th>
<th>1xdemais</th>
<th>2xdemais</th>
<th>3xdemais</th>
<th>4x6</th>
<th>5x6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>M.O</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>H + Al</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Al</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>CTC</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propriedades químicas do solo – camada de 0,20-0,30 m</th>
<th>Propriedades</th>
<th>1xdemais</th>
<th>2xdemais</th>
<th>3xdemais</th>
<th>4x6</th>
<th>5x6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>M.O</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>H + Al</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>Al</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>CTC</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Legenda: 1= Cerrado, 2= Solo exposto, 3= Solo s/adubação, 4= Adubação mineral, 5= 30 Mg ha\(^{-1}\) de lodo de esgoto, 6= 60 Mg ha\(^{-1}\) de lodo de esgoto * significativo ao nível de 5% de probabilidade; NS – não significativo, pelo teste F.
Tabela 19. Valores médios de P, M.O., pH, K, Ca, Mg, H+Al, Al, SB, CTC e V%, para os tratamentos estudados nas camadas de 0,10-0,20 e 0,20-0,30 m.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>P</th>
<th>M.O.</th>
<th>pH</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>H+Al</th>
<th>Al</th>
<th>SB</th>
<th>CTC</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg dm(^{-3})</td>
<td>g dm(^{-3})</td>
<td>CaCl(_2)</td>
<td>mmol dm(^{-3})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,10-0,20 m</td>
<td></td>
</tr>
<tr>
<td>Cerrado</td>
<td>1,75</td>
<td>10,25</td>
<td>4,05</td>
<td>0,20</td>
<td>1,25</td>
<td>1,00</td>
<td>24,75</td>
<td>9,25</td>
<td>2,05</td>
<td>26,80</td>
<td>7,75</td>
</tr>
<tr>
<td>S. exposto</td>
<td>1,00</td>
<td>1,25</td>
<td>4,32</td>
<td>0,12</td>
<td>1,00</td>
<td>0,50</td>
<td>15,00</td>
<td>3,00</td>
<td>1,17</td>
<td>16,17</td>
<td>7,00</td>
</tr>
<tr>
<td>S/ adubação</td>
<td>1,00</td>
<td>4,50</td>
<td>6,27</td>
<td>0,12</td>
<td>8,75</td>
<td>6,75</td>
<td>12,25</td>
<td>0,00</td>
<td>15,97</td>
<td>28,22</td>
<td>55,50</td>
</tr>
<tr>
<td>Ad. mineral</td>
<td>1,00</td>
<td>3,75</td>
<td>6,22</td>
<td>0,10</td>
<td>6,75</td>
<td>5,75</td>
<td>10,25</td>
<td>0,00</td>
<td>12,85</td>
<td>23,10</td>
<td>52,50</td>
</tr>
<tr>
<td>30 Mg ha(^{-1})</td>
<td>4,00</td>
<td>4,25</td>
<td>5,27</td>
<td>0,12</td>
<td>4,50</td>
<td>2,50</td>
<td>12,50</td>
<td>0,25</td>
<td>7,05</td>
<td>19,57</td>
<td>35,50</td>
</tr>
<tr>
<td>60 Mg ha(^{-1})</td>
<td>41,25</td>
<td>4,00</td>
<td>5,30</td>
<td>0,20</td>
<td>8,00</td>
<td>6,50</td>
<td>13,25</td>
<td>0,50</td>
<td>14,65</td>
<td>27,90</td>
<td>51,75</td>
</tr>
<tr>
<td>CV (%)</td>
<td>174,02</td>
<td>22,81</td>
<td>6,71</td>
<td>23,69</td>
<td>53,90</td>
<td>48,65</td>
<td>17,13</td>
<td>36,08</td>
<td>49,98</td>
<td>15,82</td>
<td>28,44</td>
</tr>
<tr>
<td>0,20-0,30 m</td>
<td></td>
</tr>
<tr>
<td>Cerrado</td>
<td>1,25</td>
<td>9,00</td>
<td>4,05</td>
<td>0,20</td>
<td>1,00</td>
<td>1,00</td>
<td>23,50</td>
<td>8,50</td>
<td>1,70</td>
<td>25,20</td>
<td>6,50</td>
</tr>
<tr>
<td>S. exposto</td>
<td>1,00</td>
<td>1,00</td>
<td>4,30</td>
<td>0,10</td>
<td>1,25</td>
<td>0,50</td>
<td>14,50</td>
<td>3,25</td>
<td>1,70</td>
<td>16,20</td>
<td>10,00</td>
</tr>
<tr>
<td>S/ adubação</td>
<td>1,00</td>
<td>2,00</td>
<td>5,40</td>
<td>0,10</td>
<td>5,00</td>
<td>3,00</td>
<td>11,25</td>
<td>0,00</td>
<td>8,25</td>
<td>19,50</td>
<td>41,50</td>
</tr>
<tr>
<td>Ad. mineral</td>
<td>1,00</td>
<td>2,25</td>
<td>5,62</td>
<td>0,15</td>
<td>4,00</td>
<td>3,75</td>
<td>11,25</td>
<td>0,75</td>
<td>7,95</td>
<td>19,20</td>
<td>38,25</td>
</tr>
<tr>
<td>30 Mg ha(^{-1})</td>
<td>1,00</td>
<td>2,25</td>
<td>5,00</td>
<td>0,10</td>
<td>3,50</td>
<td>1,75</td>
<td>12,00</td>
<td>0,50</td>
<td>5,20</td>
<td>17,20</td>
<td>30,25</td>
</tr>
<tr>
<td>60 Mg ha(^{-1})</td>
<td>4,50</td>
<td>2,00</td>
<td>5,02</td>
<td>0,10</td>
<td>3,50</td>
<td>3,25</td>
<td>12,75</td>
<td>0,25</td>
<td>6,50</td>
<td>19,25</td>
<td>34,00</td>
</tr>
<tr>
<td>CV (%)</td>
<td>95,72</td>
<td>21,62</td>
<td>12,30</td>
<td>18,85</td>
<td>50,42</td>
<td>68,96</td>
<td>10,77</td>
<td>26,46</td>
<td>58,08</td>
<td>10,84</td>
<td>45,88</td>
</tr>
</tbody>
</table>
Para o contraste do tratamento sem adubação x demais se observou que não houve diferença estatística para as propriedades químicas estudadas, ou seja, para essas propriedades os tratamentos de recuperação estão agindo de forma semelhante ao tratamento sem adubação na recuperação do solo degradado.

 Analisando os contrastes entre os tratamentos de recuperação na Tabela 18, verificou-se que no contraste 4x6 houve diferença significativa para P, K, Ca, sendo que o tratamento com 60 Mg ha\(^{-1}\) de lodo de esgoto proporcionou maior teor desses elementos (Tabela 19), significando que o mesmo está sendo mais eficiente do que a adubação mineral na modificação dessas propriedades no solo degradado. Para as demais propriedades não houve diferença, indicando que o tratamento com adubação mineral está agindo de forma semelhante ao tratamento com 60 Mg ha\(^{-1}\) para a alteração dessas propriedades no solo degradado na camada de 0,10-0,20 m.

 Para o contraste 5x6 houve diferença para P, H\(^{+}\)Al, SB, CTC e V\%, significando que o tratamento 60 Mg ha\(^{-1}\) está sendo melhor do que com 30 Mg ha\(^{-1}\) na alteração do teor desses elementos na camada de 0,10-20 m.

 Com relação à camada de 0,20-0,30 (Tabela 18) verificou-se para o contraste do tratamento cerrado x demais não houve significância estatística para P e Mg, para as demais propriedades químicas houve diferença significativa, pois as mesmas estão sendo alteradas na camada de 0,20-0,30 m pelos tratamentos de recuperação.

 No contraste do tratamento do solo exposto x demais, observou-se que não houve diferença estatística para P e K, significando que essa camada está sendo modificada pelos tratamentos de recuperação, pois a maioria das propriedades químicas diferiu da condição do solo exposto.

 Para o contraste do tratamento 3xdemais, na camada de 0,20-0,30 m, observou-se que não houve diferença estatística para as propriedades químicas estudadas, significando que os
tratamentos de recuperação estão se comportando de forma semelhante ao tratamento testemunha.

Analisando os contrastes entre os tratamentos de recuperação, notou-se que para o contraste 4x6 e 5x6 houve significância para P e K, porém para as demais propriedades não houve diferença, ou seja, os tratamentos com adubação mineral e com 60 Mg ha\(^{-1}\) estão se comportando de forma semelhante sobre as propriedades químicas estudadas.

4.3 Análise da produção de massa verde e seca da braquiária

Na Tabela 20 pode-se observar que houve diferença significativa entre os tratamentos para a produção de massa verde e seca da braquiária. Analisando a produção das mesmas verificou-se que o tratamento sem adubação não diferiu estatisticamente do tratamento com adubação mineral. Entre os tratamentos com 30 e 60 Mg ha\(^{-1}\) de lodo de esgoto também não houve significância para a produção de massa verde e seca. Porém, nota-se que maior produção de massa verde e seca da braquiária ocorreram nos tratamentos que receberam 30 e 60 Mg ha\(^{-1}\) de lodo de esgoto.

Resultados semelhantes foram observados por Oliveira et al. (1995), pois a aplicação de lodo de esgoto em doses superiores a 20 Mg ha\(^{-1}\) proporcionou melhores resultados no desenvolvimento do sorgo granífero. Já Tramin, Siqueira e Moreira (2005) verificou que a adição da dose de 10 Mg ha\(^{-1}\) de lodo de esgoto em base seca, suplementada com K\(_2\)O e 30% da exigência em P\(_2\)O\(_5\), proporciona produtividade de milho equivalente à obtida com adubação mineral completa.

A matéria orgânica presente no lodo de esgoto favorece a formação de agregados, facilitando a penetração das raízes e a vida microbiana. A matéria orgânica também atua junto à resistência do solo à erosão por estabilizar a estrutura do solo, aumentando a capacidade de
retenção de água tornando as culturas mais resistentes à seca, além de fornecer nutrientes para as plantas propiciando maior rendimento de massa verde e seca (TSUTIYA, 2001b).

Suzuki (2005), analisando os efeitos das adubações verdes e orgânicas na produção de braquiária em um Latossolo Vermelho degradado, verificou que após 274 dias de semeadura o rendimento da massa seca da braquiária aumentou aproximadamente 28 vezes, passando de 366 kg ha\(^{-1}\) aos 88 dias para 10.133 kg ha\(^{-1}\). Já Alves (2001), estudando a produção de massa seca de braquiária num solo em recuperação há sete anos, verificou produção de 7.000 kg ha\(^{-1}\), porém sem haver corte da fitomassa no ano. Portanto, analisando os resultados referentes à massa verde e seca nota-se que os tratamentos com lodo de esgoto estão propiciando a recuperação do solo degradado.

Tabela 20. Rendimento de massa verde e seca da braquiária avaliada 2,5 anos após a semeadura.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Massa verde (kg ha(^{-1}))</th>
<th>Massa seca (kg ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solo s/ adubação</td>
<td>17698 B</td>
<td>9780 B</td>
</tr>
<tr>
<td>Ad. Mineral</td>
<td>27198 B</td>
<td>13236 B</td>
</tr>
<tr>
<td>30 Mg ha(^{-1})</td>
<td>64260 A</td>
<td>22023 A</td>
</tr>
<tr>
<td>60 Mg ha(^{-1})</td>
<td>66885 A</td>
<td>23248 A</td>
</tr>
<tr>
<td>C V (%)</td>
<td>47,26</td>
<td>33,65</td>
</tr>
<tr>
<td>DMS (5%)</td>
<td>28604</td>
<td>7900</td>
</tr>
</tbody>
</table>

Médias seguidas de letras iguais na coluna, não diferem estatisticamente entre si, pelo teste de Tukey a 5 % de probabilidade.

4.4 Análise do desenvolvimento das plantas de eucalipto

De acordo com os dados observados na Tabela 21 pode-se verificar que houve diferença significativa para a altura das plantas do eucalipto entre os tratamentos estudados. O tratamento com 60 Mg ha\(^{-1}\) diferiu do demais, sendo que o mesmo proporcionou maior desenvolvimento do eucalipto, o mesmo ocorrendo para o DAP (diâmetro á altura do peito).
Apesar de não ter ocorrido diferenças para as propriedades físicas do solo, entre os tratamentos para recuperação, pelos resultados de desenvolvimento de plantas de eucalipto, verificou-se que houve um diferencial para o tratamento com 60 Mg ha\(^{-1}\), provavelmente devido a alterações nas propriedades químicas do solo.

Estes resultados foram concordantes aos de Colodro (2005) que estudando o efeito do lodo de esgoto sobre a altura e DAP (diâmetro à altura do peito), observou que os tratamentos com lodo de esgoto promoveram um melhor crescimento e maior diâmetro das plantas de eucalipto, sendo que a dose de lodo de 60 Mg ha\(^{-1}\) foi significativamente superior a todos os demais tratamentos. Segundo Rocha et al. (2004) a adição do lodo de esgoto influenciou positivamente a nutrição das plantas, gerando uma produção de madeira semelhante à obtida no tratamento que só recebeu adubação mineral com uma dose de 12 t ha\(^{-1}\) de lodo (estimada por regressão). A produção máxima estimada de madeira (45,5 t ha\(^{-1}\)) seria conseguida com a aplicação de 37 t ha\(^{-1}\) de lodo de esgoto.

Tabela 21. Valores médios para altura e diâmetro do caule das plantas de eucalipto avaliadas 2,5 anos após o plantio.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Altura (m)</th>
<th>DAP (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solo s/ adubação</td>
<td>3,14 B</td>
<td>2,61 B</td>
</tr>
<tr>
<td>Ad. Mineral</td>
<td>3,54 B</td>
<td>2,78 B</td>
</tr>
<tr>
<td>30 Mg ha(^{-1})</td>
<td>3,99 B</td>
<td>3,28 B</td>
</tr>
<tr>
<td>60 Mg ha(^{-1})</td>
<td>5,94 A</td>
<td>5,56 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CV (%)</th>
<th>DMS (5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18,45</td>
<td>23,39</td>
</tr>
<tr>
<td>1,70</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Médias seguidas de letras iguais na coluna, não diferem estatisticamente entre si, pelo teste de Tukey a 5 % de probabilidade.
5. CONCLUSÕES

Com os resultados encontrados, pode-se concluir que:

1. O lodo de esgoto influenciou as propriedades físico-hídricas e químicas do solo estudado.

2. O solo estudado está sendo recuperado, porém os tratamentos para recuperação estão agindo de forma semelhante entre si para algumas propriedades físicas e químicas.

3. A densidade do solo e porosidade total foram melhores indicadores da recuperação do solo.

4. O uso de lodo de esgoto proporcionou maior rendimento de massa verde e seca da braquiária e promoveu maior desenvolvimento das plantas de eucalipto.
6. REFERÊNCIAS BIBLIOGRÁFICAS

CAMPOS, B.C.; REINERT, D.J.; NICOLODI, R.; RUEDELL, J.; PETRERE, C. Estabilidade estrutural de um Latossolo Vermelho-Escuro distrófico após sete anos de rotação de culturas e

MOLINA, M.V. Nitrogênio e metais pesados em Latossolo e eucalipto cinqüenta e cinco meses após a aplicação de biossólido. Piracicaba, 2004. 81 f. Dissertação (Mestrado em

REZENDE, C.I.O. Influência da aplicação do lodo de esgoto (bioossólido) sobre a concentração e o estoque de nutrientes na biomassa do sub-bosque, na serrapilheira e no solo de um talhão de E.grandis. Piracicaba, 2005. 81 f. Dissertação (Mestrado em Ecologia

7-ANEXOS
O modelo matemático utilizado para realizar a análise de variância, referente às propriedades estudadas foi o seguinte:

\[X_{ij} = m + t_i + b_j + e_{ij} \]

Onde:

- \(X_{ij} \): valor observado na parcela que recebeu o tratamento \(i \) e se encontra no bloco \(j \);
- \(m \): média geral;
- \(t_i \): efeito do tratamento \(i \);
- \(b_j \): efeito do bloco \(j \);
- \(e_{ij} \): erro aleatório.

Quadro 1- Análise de variância do experimento.

<table>
<thead>
<tr>
<th>Causa da variação</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamentos</td>
<td>I-1</td>
<td>(\sum T_i^2 - FC)</td>
<td>(SQT_{\text{Trat}})</td>
<td>(QMT_{\text{Trat}})</td>
</tr>
<tr>
<td></td>
<td>J-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocos</td>
<td>J-1</td>
<td>(\sum B_j^2 - FC)</td>
<td>(SQB_{\text{Blocos}})</td>
<td>(QMB_{\text{Blocos}})</td>
</tr>
<tr>
<td>Resíduo</td>
<td>(I-1) (J-1)</td>
<td>Diferença</td>
<td>(SQR_{\text{Res}})</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>N-1</td>
<td>(\sum \sum x_{ij}^2 - FC)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(I = \) Tratamento; \(J = \) Blocos; \(N = I \times J -1 \).
Os dados referentes às propriedades físico-hídricas e químicas do solo foram submetidos ao desdobramento dos graus de liberdade de tratamentos.

Os contrastes de totais de tratamentos para cada componente do desdobramento foram os seguintes:

- **Cerrado x Demais**
 \[Y_1 = 5T_1 - T_2 - T_3 - T_4 - T_5 - T_6 \]

- **Solo exposto x Demais**
 \[Y_2 = 4T_2 - T_3 - T_4 - T_5 - T_6 \]

- **Solo s/adubação x Demais**
 \[Y_3 = 3T_3 - T_4 - T_5 - T_6 \]

- **Ad. Mineral x 60 Mg ha\(^{-1}\)**
 \[Y_4 = T_4 - T_6 \]

- **30 Mg ha\(^{-1}\) x 60 Mg ha\(^{-1}\)**
 \[Y_5 = T_5 - T_6 \]
Quadro 2- Análise de variância do desdobramento dos graus de liberdade de tratamentos, para as propriedades físico-hídricas e químicas estudadas.

<table>
<thead>
<tr>
<th>Causa da variação</th>
<th>GL</th>
<th>SQ</th>
<th>QM</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerrado x Demais</td>
<td>1</td>
<td>SQY₁ = Ŷ₁² / r.∑ci²</td>
<td>SQ Y₁</td>
<td>QMY₁</td>
</tr>
<tr>
<td>Solo exposto x Demais</td>
<td>1</td>
<td>SQ Y₂ = Ŷ₂² / r.∑ci²</td>
<td>SQ Y₂</td>
<td>QMY₂</td>
</tr>
<tr>
<td>Solo s/adubação x Demais</td>
<td>1</td>
<td>SQ Y₃ = Ŷ₃² / r.∑ci²</td>
<td>SQ Y₃</td>
<td>QMY₃</td>
</tr>
<tr>
<td>Ad. Mineral x 60 Mg ha⁻¹</td>
<td>1</td>
<td>SQ Y₄ = Ŷ₄² / r.∑ci²</td>
<td>SQ Y₄</td>
<td>QMY₄</td>
</tr>
<tr>
<td>30 Mg ha⁻¹ x 60 Mg ha⁻¹</td>
<td>1</td>
<td>SQ Y₅ = Ŷ₅² / r.∑ci²</td>
<td>SQ Y₅</td>
<td>QMY₅</td>
</tr>
<tr>
<td>Tratamentos I-1</td>
<td></td>
<td>SQTrat = ∑ SQY = -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blocos J-1</td>
<td></td>
<td>J= ∑ Bᵢ² - FC / I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resíduo (I-1) (J-1)</td>
<td></td>
<td>Diferença = ∑ SQRes (I-1) (J-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total N-1</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

I = Tratamento; J = Blocos; N = I x J -1; r = número de repetições; Ŷ = estimativa dos contrastes; ∑ci = somatória dos coeficientes dos totais de tratamentos.