

Democritus (460 b.C. – 370 b.C.): "Matter could not be divided into smaller and smaller pieces forever, eventually the smallest possible piece would be indivisible." The smallest piece of matter "**atomos**", meaning "not to be cut." Pioneer of **atomism**.

http://en.wikipedia.org/wiki/Democritus

Epicurus (341 b.C. – 270 b.C.): "Everything that occurs is the result of the atoms colliding, rebounding, and becoming entangled with one another, with no purpose or plan behind their motions."

To the Atomists, atoms were small, hard particles that were all made of the same material but were different shapes and sizes. Atoms were infinite in number, always moving and capable of joining together.

Others philosophers, as Aristotle and Plato, state a (wrong) theory that the nature of matter was composed by four elements – Earth (solid), Water (liquid), Air (gas), Fire (heat). Aether could be considered a fifth element. This theory of the four elements became the standard dogma for the next two thousand years.

> John Dalton atomic model (billiard ball model, 1803):

John Dalton (1766-1844)

• Dalton states that all elements are composed of atoms, which are indivisible and indestructible particles.

• Atoms of the same element are exactly alike and those from different elements are different.

• Chemical compounds, as water, are formed by the joining of atoms of two or more elements.

> Thomson atomic model (plum pudding model, 1897):

Joseph John Thomson (1856-1940)

- Thomson studied the passage of an electric current through a gas.
- In 1897 Lord Kelvin proved that an atom is made of even smaller electrical charged particles (electrons).
- Thomson proposed that atoms were made from a positively charged particles/ substance with negatively charged electrons scattered inside, like raisins in a pudding.
- But he could never find them.

Rutherford atomic model (planetary model, 1912):

Ernest_Rutherford (1871-1937)

- In 1908, Rutherford's experiment involved firing a stream of tiny positively charged particles at a thin sheet of gold foil (2000 atoms thick).
- Most of the positively charges passed right through the sheet of gold foil but some of the them did bounce away from the gold sheet as if they had hit something solid. He knew that positive charges repel positive charges.
- Rutherford concluded that an atom had a small, dense, positively charged center (nucleus) that repelled his positively charged "bullets."

Rutherford atomic model (planetary model, 1912):

• Rutherford reasoned that all of an atom's positively charged particles were contained in the nucleus. The negatively charged particles were scattered outside the nucleus around the atom's edge.

Bohr atomic model (1913):

Niels_Bohr (1885-1962)

• In 1913, the Danish scientist **Niels Bohr** proposed a model where he placed each electron in a specific orbit (energy level) around the nucleus.

• These orbits, or energy levels, are located at specific distances (radius) from the nucleus.

8:

http://en.wikipedia.org/wiki/Niels_Bohr

Modern quantum mechanics (Heisenberg et al, 1927):

Werner_Heisenberg (1901-1976)

• According to the theory of wave mechanics, electrons do not move around an atom in a definite path, like the planets around the sun.

• In fact, it is impossible to determine the exact position of an electron. The probable location of an electron is based on how much energy the electron has.

• According to the modern atomic model, at atom has a small positively charged nucleus surrounded by a large region (electron cloud) in which there are enough electrons to make an atom electrically neutral.

http://en.wikipedia.org/wiki/Werner_Heisenberg

The free atom

The free atom

Comparison of the Size of the Sun to the Solar System with the Size of the Gold Atomic Nucleus to the Gold Atom

http://www.meta-synthesis.com/webbook/34_qn/qn_to_pt.html

Quantum numbers of electrons:

Defined as "The sets of numerical values which give acceptable solutions to the Schrödinger wave equation for the Hydrogen atom". From: http://en.wikipedia.org/wiki/Quantum_number

> Principal quantum number (n): n = 1 (K), 2 (L), ...

> Azimuthal (orbital) quantum number (ℓ): " $\ell = 0$ " - Sharp orbital, " $\ell = 1$ " - Primitive orbital, " $\ell = 2$ " - Diffuse orbital, and " $\ell = 3$ " - Fundamental orbital.

Magnetic quantum number (m): "m = 0" - s orbital; "m = -1,0,1" - p orbital; "m = -2,-1,0,1,2" - d orbital

> Spin quantum number (s): $s = -\frac{1}{2}$ or $s = +\frac{1}{2}$

Electrons enter and fill orbitals according to four rules:

Pauli Exclusion Principal	Orbitals can contain a maximum of two electrons which must be of opposite spin.
Aufbau or Build-up Principle	Electrons enter and fill lower energy orbitals before higher energy orbitals.
Hund's Rule	When there there are degenerate (equal energy) orbitals available, electrons will enter the orbitals one-at-a-time to maximise degeneracy, and only when all the orbitals are half filled will pairing-up occur. This is the rule of maximum multiplicity.
Madelung's Rule	Orbitals fill with electrons as $n + l$, where n is the principal quantum number and l is the subsidiary quantum number. This rule 'explains' why the 4s orbital has a lower energy than the 3d orbital, and it gives the periodic table its characteristic appearance.

Hund's Rule:

or

2p

> Madelung's Rule:

K (2) L (8) M (18) N (32) O (32) P (18) Q (8)

Expected Electron Configurations:

Na: 1s² 2s² 2p⁶ 3s¹

C: 1s² 2s² 2p²

CI: 1s² 2s² 2p⁶ 3s² 3p⁵/

Fe: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ 4s²____

Element	Symbol	Atomic Number	Electron Configuration
Hydrogen	н	1	1s ¹
Helium	He	2	1.s ²
Lithium	Li	3	1s ² 2s ¹
Beryllium	Be	4	$1s^22s^2$
Boron	В	5	$1s^22s^22p^1$
Carbon	С	6	$1s^2 2s^2 2p^2$
Nitrogen	N	7	$1s^2 2s^2 2p^3$
Oxygen	0	8	$1s^22s^22p^4$
Fluorine	F	9	$1s^2 2s^2 2p^5$
Neon	Ne	10	$1s^2 2s^2 2p^6$
Sodium	Na	11	1s ² 2s ² 2p ⁶ 3s ¹
Magnesium	Mg	12	$1s^2 2s^2 2p^6 3s^2$
Aluminum	AL	13	1s22s22p63s23p1
Silicon	Si	14	$1s^22s^22p^63s^23p^2$
Phosphorus	Р	15	1s ² 2s ² 2p ⁶ 3s ² 3p ³
Sulfur	S	16	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴
Chlorine	Cl	17	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵
Argon	Ar	18	$1s^2 2s^2 2p^6 3s^2 3p^6$
Potassium	K	19	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹
Calcium	Ca	20	$1s^22s^22p^63s^23p^64s^2$
Scandium	Sc	21	1s22s22p63s23p63d14s2
Titanium	Ti	22	1s22s22p63s23p63d24s2
Vanadium	v	23	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ²
Chromium	Cr	24	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹
Manganese	Mn	25	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ²
Iron	Fe	26	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ 4s ²
Cobalt	Co	27	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ²
Nickel	Ni	28	$1s^22s^22p^63s^23p^63d^84s^2$
Copper	Cu	29	$1s^22s^22p^63s^23p^63d^{10}4s^1$
Zinc	Zn	30	1522522063523063710452

> Deviations from Expected Electronic Structures:

Fe (actual): 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ 4s²

The unfilled 3d level causes the magnetic behavior of iron.

> Valence: number of electrons in an atom that participate in bonding or chemical reactions. Valence also depends on the immediate environment surrounding the atom or the neighboring atoms available for bonding. Na: $1s^2 2s^2 2p^6 3s^1$ V = 1

Na:
$$1s^2 2s^2 2p^6 3s^1$$
 V = 1
Mg: $1s^2 2s^2 2p^6 3s^2$ V = 2
Al: $1s^2 2s^2 2p^6 3s^2 3p^1$ V = 3
Cl: $1s^2 2s^2 2p^6 3s^2 3p^5$ V = 7
Ar: $1s^2 2s^2 2p^6 3s^2 3p^6$ V = 0

16>

Figure 2-8 The electronegativities of selected elements relative to the position of the elements in the periodic table.

V*T*E									Perio	dic tab	le								[hide]
Group	1 Alkali metals	2 Alkaline earth metals		3	4	5	6	7	8	9	10	11	12	13	14	15 Pnictogens	16 Chalco- gens	17 Halogens	18 Noble gases
Period	Hydroge	1																	Helium
1	1 H			http:	//en.w	ikipeo	dia.org	/wiki/	Period	c_tab	le#Pei	riodic	_table	_legen	d_for	_categ	ory		2 He
	Lithium	Beryllium												Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
2	3 Li	4 Be												5 B	6 C	7 N	8 0	9 F	10 Ne
	Sodium	Magne-												Aluminium	Silicon	Phos-	Sulfur	Chlorine	Argon
3	11 Na	12 Mg			-									13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
	Potassiu	n Calcium		Scandium	Titanium	Vanadium	h Chromium	Manga- nese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germa- nium	Arsenic	Selenium	Bromine	Krypton
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
-	Rubidiun	Strontium		Yttrium	Zirconium	Niobium	Molyb- denum	Tech- netium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
-	Caesium	Barium		Lutetium	Hafnium	Tantalum	Tungsten	Rheniun	n Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
	Francium	Radium		Lawren- cium	Ruther- fordium	Dubnium	Sea- borgium	Bohrium	Hassium	Meitnerium	Darm- stadtium	Roent- genium	Coper- nicium	Ununtrium	Flerovium	pentium	Liver- morium	Unun- septium	Unun- octium
7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 FI	115 Uup	116 Lv	117 Uus	118 Uuo
			Lanthanum	Cerium	Praseo-	Neo-	Prome- thium	Samariu	n Europium	Gadolinium	Terbium	Dyspro-	Holmium	Erbium	Thulium	Ytterbium			
		*	57	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Th	66 Dv	67 Ho	68 Er	69 Tm	70 Vh			
			Actinium	Thorium	Protac-	Uranium	Neptunium	Plutoniur	n Americium	Curium	Berkelium	Californiun	Einsteiniur	n Fermium	Mende-	Nobelium			
		**	89	90	91	92	93	94	95	96	97	98	99	100	101	102			
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No			
bl	ack=solid	1 3	green=liqui	al and a second	red=g	as	grey=u	inknovvn	Color of	the atom	ic numbe	r shows s	tate of mat	ter (at 0 °C a	and 1 atm)]
F	Primordial		From decay	(Synthe	tic	Border sho	ows natu	ral occurrenc	e of the ele	ement								
Backgro	ound colo	shows su	bcategory i	h the metal-	-metalloid-	nonmetal tr	rend:							Manual	4				
Alka	i metal	Alkaline ea metal	arth L	anthanide	Ac	tinide	Transition	metal	Post-transitic metal	n M	etalloid	Polya	tomic c	iatomic non	metal	Noble gas	chi pro	emical perties	

ELEMENTS IN METALLIC MATERIALS

1 IA	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 VIIA
	IIA											IIIA	IVA	VA	VIA	VIIA	
3 Li	4 Be											5 B					
11 Na	12 Mg	ПВ	IVB	VB	VIB	VIIB		VIII		IB	ΠВ	13 Al					
19 K	20 Ca	21 Sc	22 Tì	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga					
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb			
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Ац	80 Hg	81 Ti	82 РЬ	83 Bi			
87 Fr	88 Ra											rd 8				2001	·

Shackelford & Alexander (2001)

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЪ	Dy	Ho	Er	Tm	ҮЬ	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw

ELEMENTS IN CERAMIC MATERIALS

1 IA	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 VIIA
	IIA											IIIA	IVA	VA	VIA	VIIA	
3 Li	4 Be											5 B	6 C	7 N	8 0		
11 Na	12 Mg	шв	IVB	VB	VIB	VIIB		VIII	<u>01104</u> 5	в	ΠВ	13 Al	14 Si	15 P	16 S		
19 K	20 Ca	21 Sc	22 Tì	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge				
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb			
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Ti	82 РБ	83 Bi			
87 Er	88 Pa																

Shackelford & Alexander (2001)

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЪ	Dy	Ho	Er	Tm	ҮЬ	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw

ELEMENTS IN POLYMERIC MATERIALS

1 IA	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 VIIA
1 H	IIA											IIIA	IVA	VA	VIA	VIIA	
													6 C	7 N	8 0	9 F	
	4 4 4 4	IIIB	IVB	VB	VIB	VIIB		VIII		IB	ШΒ		14 Si				
															S. 9-5		
				I	ļ	<u> </u>	 	<u> </u>	Sł	nack	elfo	rd &		kand	ler (2	2001	

ELEMENTS IN SEMICONDUCTING MATERIALS

1 IA	2 T	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 VIIA
	IIA	-										IIIA	IVA	VA	VIA	VIIA	
															8 0		
		пв	IVB	VB	VIB	VIB	()	VIII		IB	ΠВ	13 Al	14 Sı	15 P	16 S		
										a	30 Zn	31 Ga	32 Ge	33 As	34 Se		
											48 Cd	49 In	50 Sn	51 Sb	52 Te		
											80 Hg						
					I	<u>10 0</u>		1									

Shackelford & Alexander (2001)

Bibliografia Básica

> CALLISTER JR, W. D. AND RETHWISCH, D. G.

Fundamentals of Materials Science and Engineering: An Integrated Approach, 4th ed. John Wiley & Sons, Inc. 2012, 910p. ISBN 978-1-118-06160-2.

≻ MITTEMEIJER, E. J.

Fundamentals of Materials Science: The Microstructure–Property Relationship Using Metals as Model Systems. Springer-Verlag Berlin. 2010, 594p. ISBN 978-3-642-10499-2.

> ASKELAND, D. AND FULAY, P.

Essentials of Materials Science & Engineering, 2nd Edition.

Cengage Learning. 2009, 604p. ISBN 978-0-495-24446-2.

> SMALLMAN, R. E. and NGAN, A.H.W.

Physical Metallurgy and Advanced Materials, 7th Edition.

Elsevier Ltd. 2007, 650p. ISBN 978-0-7506-6906-1.

- http://www.meta-synthesis.com/webbook/34_qn/qn_to_pt.html
- http://education.jlab.org/qa/atom_model.html
- http://www.timetoast.com/timelines/history-of-the-atomic-model--36
- http://education.jlab.org/qa/electron_config.html
- > http://www.physicsclassroom.com/class/estatics/Lesson-1/The-Structure-of-Matter

Nota de aula preparada pelo Prof. Juno Gallego para a disciplina Ciência dos Materiais de Engenharia. ® 2015. Permitida a impressão e divulgação.

http://www.feis.unesp.br/#!/departamentos/engenharia-mecanica/grupos/maprotec/educacional/