

	Outlines	
Introduc	tion	
 Acoustic 	Emission (AE) Signals	
 Acoustic 	Emission Sensors	
• AE Stand	dards	
Source L	ocalization	
 Applicati 	ions	

AE as a SHM technique

- A passive method:
 - only detects defects when they are activated by applying a stress that is adequately large.
 - cannot interrogate a structure at will
- In general, only possible to detect and locate defects
- May cover relatively large areas (depending on applications) compared to other NDE approaches
- Not suitable for locating multiple damage sites
- Recent trend is to combine with other (active) SHM approaches
- Applications
 - Leak detection
 - Monitoring manufacturing processes (turning, welding..)
 - Corrosion monitoring
 - Impact localization and many others
- A mature technology with industrial applications from early 60s

Los Alamos Dynamics Structural Dynamics and Mechanical Vibration Consultants

Eur	opean Working Group on Acoustic Emission (EWGAE)
	Code I : Location of Sources of Discrete Acoustic Events (1981)
	Code II : Leak Detection (1984)
	Code III : Examination of Small Parts (1984)
	Code IV : Definition of Terms in AE (1985)
	Code V : Recommended Practice for Specification, Coupling and Verification of the
	Piezoelectric Transducers Used in AE (1985)
	Code VI : Recommended Practice for Verifying the Performance of Acoustic Emission Equipment Prior to Testing
,	
The	Japanese Society for Non-Destructive Inspection(JSNDI)
	NDIS-2106 : Evaluation of Performance Characteristics of Acoustic Emission Testing Equipment (1979)
,	NDIS-2049 : Acoustic Emission Testing of Pressure Vessel and Related Facilities
,	During Pressure Testing(1979)
	NDIS-2412 : Acoustic Emission Testing of Spherical Pressure Vessel Made of High Tensile Strength Steel and Classification of Test Results (1980)

