LABORATÓRIO DE FÍSICA I

Haroldo Naoyuki Nagashima

Ilha Solteira – SP
Agosto de 2012
Instruções para a apresentação de relatórios...1

Teoria de Erros..7

1. Introdução...8
2. Grandezas Físicas...9
3. Padrões adotados no S.I. ..9
4. Medidas de uma grandeza..10
5. Erros de Medidas...10
 5.1 – Desvios...10
 5.2 - Erro Absoluto e Erro Relativo...11
 5.3 - Classificação dos Erros..12
 5.4 - Precisão e Exatidão de uma Medida..14
6. Medida Direta de uma Grandeza...15
 6.1 - Exemplos...18
 6.2 - Noções sobre a distribuição dos erros acidentais......................................20
 6.3 - Regras simplificadas para utilização dos desvios....................................23
7 - Teoria das Aproximações...24
8 - Operações com desvios..25
9 - Ordem de grandeza e algarismos significativos..26
 9.1 - Ordem de grandeza..26
 9.2 Algarismos significativos..26
 9.3 Apresentação final de grandezas físicas...28
10 - Operações com algarismos significativos...29
 10.1 - Adição e subtração...29
 10.2 - Multiplicação e divisão...29
11 - Retas de mínimos quadrados..30
1º Experimento: Medidas Físicas - Parte A...32
1º Experimento: Medidas Físicas - Parte B...40
Tabelas, Quadros, Gráficos e Funções. ...46
 1 – Tabelas e Quadros...46
 2 - Gráficos...48
 3 – Funções..50
 4 - Gráficos de Funções Lineares..51
 5 - Gráficos de funções não lineares e Linearização da curva.............55
 5.1. Função Potência ...55
 5.2. Função Exponencial..58
 6 – Barras de Erro..61
 7 – Equações..62
2º Experimento: Gráficos e Funções – Movimento em meio viscoso...........63
3º Experimento: Gráficos e Funções – Sifonação de líquidos.....................66
4º Experimento: Gráficos e Funções – Flexão..73
5º Experimento: Movimento retilíneo uniformemente acelerado...............76
6º Experimento: Queda Livre..82
7º Experimento: Determinação do coeficiente de atrito.............................87
8º Experimento: Movimento de um projétil...94
9º Experimento: Colisões Unidimensionais...99
10º Experimento: Colisões Bidimensionais ...102
11º Experimento - A: Princípio de Conservação da Energia.......................105
11º Experimento - B: Princípio de Conservação da Energia.......................109
Constantes Físicas...113
1. Introdução

O curso de Laboratório de Física - I é o primeiro passo para a formação de profissionais que, atuando na área de ciências exatas, terão de lidar com atividades experimentais. Pontos fundamentais para tal atividade são: a organização, iniciativa, dedicação e apresentar os resultados de forma clara. Assim, recomenda-se a cada aluno o uso de um caderno específico para o curso de laboratório. Neste caderno deverão estar contidas as notas de aulas, resultados experimentais e detalhes do procedimento experimental adotado. Com esse caderno, a tarefa de confeccionar os relatórios será em muito facilitada.

A redação de relatórios será uma constante no decorrer deste curso. Para isso apresentamos algumas ideias gerais que serão igualmente úteis quando se tratar de escrever artigos científicos ou técnicos.

A primeira consideração é: "O que é que você quer relatar e para quem?". Lembre-se sempre do leitor! O seu trabalho deve ser lido e entendido por outras pessoas, além de você e o professor que indicou a experiência.

Um artigo ou relatório deve ser ao mesmo tempo claro e conciso, curto e completo. Escreva frases curtas, claras e que conduzam diretamente ao assunto. Evite usar a primeira pessoa do singular, use a forma passiva ou a primeira pessoa do plural, e não as misture.

Divida o relatório em partes. Se o mesmo trabalho incluir várias experiências diferentes estas devem ser descritas separadamente para facilitar a leitura.

A seguir apresentaremos algumas instruções que visam à padronização e facilitarão a tarefa da redação e apresentação de relatórios, no decorrer do curso. Estas "Normas" foram extraídas de documentações específicas [1-5] e também de
sugestões propostas por agências fornecedoras de bolsas de estudos como, por exemplo, FAPESP e CNPQ.

2. Apresentação geral

O relatório a ser apresentado deverá ser composto dos seguintes itens:

- Capa.
- Sumário.
I - Objetivo.
II - Resumo
III - Introdução Teórica.
IV - Procedimento Experimental.
V - Resultados e Discussão.
VI - Conclusão.
VII - Referências bibliográficas.

Na capa deverá conter: o nome da unidade, o título do trabalho, nome do aluno, número da turma, nome do professor e data.

O sumário deverá conter a numeração das páginas a que pertencem os itens de I a VIII acima descritos.

I - Objetivo: Escreva, de maneira clara e sucinta, o trabalho realizado e o método experimental empregado. A ideia é de que qualquer pessoa, ao lê-lo, saiba de que se trata e decida se o conteúdo a interessa ou não. Use no máximo 10 linhas.

II – Resumo: Denominado Resumé em francês, Abstracts em inglês, Resumen em espanhol, é a apresentação concisa do texto, destacando os aspectos de maior importância e interesse. Não deve ser confundido com Sumário, que é uma lista dos capítulos e seções. No sumário, o conteúdo é descrito pôr títulos e
subtítulos, enquanto no resumo, que é uma síntese, o conteúdo é apresentado em forma de texto reduzido. O resumo deve ser escrito em um único parágrafo e deve conter: introdução, metodologia, resultados e conclusões. Tais palavras, entretanto, não devem constar no texto, mas essa sequência é recomendada. O resumo não deverá conter citações bibliográficas e tabelas.

III - Introdução Teórica: Nesta seção, diz-se basicamente qual a motivação do trabalho. Sempre que possível deve-se fazer uma revisão histórica do assunto mencionando os trabalhos de maior relevância. É nesta parte que as considerações gerais devem ser discutidas. Devem-se apresentar também os modelos matemáticos pertinentes, mas sem a apresentação detalhada do desenvolvimento matemático empregado. Caso o desenvolvimento matemático seja relevante ou possua alto grau de dificuldade, este poderá ser apresentado em um apêndice. O apêndice deve vir depois da conclusão e antes das referências bibliográficas, devendo ser indicados por letras maiúsculas (ou números romanos) e apresentar um título.

IV – Procedimento Experimental: Nesta seção, descreve-se a montagem experimental utilizada e os procedimentos adotados. Para isso, é conveniente o uso de esquemas que facilitem a interpretação feita pelo leitor. Deve-se ter em mente que os elementos sejam suficientes para que o leitor possa repetir a experiência, se assim o desejar.

V - Resultados e Discussão: É a seção onde os resultados são apresentados e discutidos. A apresentação se faz, geralmente, em forma de figuras (gráficos) e/ou tabelas. Observe se todas as variáveis e constantes foram definidas. Esteja atento para não se esquecer das unidades, principalmente em tabelas e gráficos. A discussão deve ser baseada no modelo teórico proposto ou em medidas realizadas por outros autores. Deve-se comparar teoria e experimento. Se a concordância não for boa, explicar o porquê, o que está errado, se a teoria ou experimento, e onde
estão os pontos falhos.

VI - Conclusão: A conclusão fecha o trabalho, mostrando a importância daquilo que foi feito e se isso trouxe alguma informação nova. Uma avaliação do método experimental empregado, sugestões para novos tipos de medidas ou aprimoramento do método empregado também deve ser apresentada nesta seção.

VII - Referências bibliográficas:

(b) Artigo de periódico: SOBRENOME, PRENOME; SOBRENOME, PRENOME abreviado abreviado Título: subtítulo (se houver). Nome do periódico, Local de publicação, volume, número ou fascículo, paginação, data de publicação do periódico.

2. Apresentação de ilustrações em relatório

A Associação Brasileira de Normas Técnicas (ABNT) define normas para ilustrações. Em um relatório, as ilustrações devem ser elaboradas segundo a norma da ABNT NBR 14724/2011, conforme segue.

Qualquer que seja o tipo de ilustração, sua identificação deve aparece na parte superior, precedida da palavra designativa (desenho, esquema, fluxograma, fotografia, gráfico, mapa, organograma, planta, quadro, retrato, figura, imagem, entre outros), seguida de seu número de ordem de ocorrência no texto, em algarismos arábicos, travessão e do respectivo título.

Após a ilustração, na parte inferior, indicar a fonte consultada (elemento
obrigatório, mesmo que seja produção do próprio autor), legenda, notas e outras informações necessárias à sua compreensão (se houver). A ilustração deve ser citada no texto e inserida o mais próximo possível do trecho a que se refere.

Veja o exemplo abaixo.

Figura 1 – Condutividade elétrica de um compósito em função da concentração de negro de fumo

![Figura 1](image_url)

Nota: Medida realizada em amostras de compósitos de poliuretano com negro de fumo.

Fonte: Nagashima, 2012.

O tipo de ilustração foi colocado em negrito. O título foi apresentado com o mesmo tamanho e fonte do texto. A nota e a fonte foram apresentadas com tamanhos menores, logo abaixo da ilustração.
3. Referências Bibliográficas

TEORIA DE ERROS

1. Introdução

Nas ciências experimentais estamos envolvidos com análises de resultados de medições, em geral expressos em números que devemos ter claramente definidos, \textit{a priori}, para interpretá-los corretamente. Esses números estão associados às grandezas físicas que queremos medir.

Quando fazemos uma medição de um dado objeto, usando um instrumento de medida, percebemos que o ato de medir é estar fazendo uma comparação com uma unidade associada ao instrumento. Outra observação que podemos ressaltar é que ao efetuarmos medições de alguma grandeza nem sempre esta pode ser obtida diretamente. Por exemplo, para quantificar uma área de um terreno necessitamos primeiramente efetuar medidas de comprimentos que delimitam o terreno, para depois determinarmos a área por meio de cálculos algébricos. Diferenciamos, neste exemplo, então as medidas diretas que são as dos comprimentos e a medida indireta que é a da área.

É curioso perguntarmos, agora, se a medida de uma grandeza física, como resultado da medição está correta ou não. Normalmente, respondemos a essa pergunta com outra pergunta: qual é o valor correto?

Para começarmos a responder a esta questão, podemos fazer as seguintes observações usando como exemplo uma régua milimetrada para associarmos um número ao comprimento de um objeto. Ajustamos uma das extremidades do objeto com o zero da régua e a leitura do comprimento é feita pela posição da extremidade livre do objeto em relação à extensão da régua. No entanto, muitas vezes a extremidade livre do objeto não coincide exatamente com algum número inscrito na régua. Nesse caso, dizemos que o comprimento é “quase tal medida” ou
“mais ou menos tal medida”, de forma que estimamos um valor para esse “mais ou menos”, de acordo com o nosso bom senso. Esse resultado indica que a medida está sujeita a erros que normalmente não conseguimos eliminar, pois está associado ao próprio processo de medida (*observe que se a régua tivesse mais divisões menores que a de um milímetro, nós teríamos menos dificuldades para estimar o valor do “mais ou menos”*). Esse resultado é considerado, no entanto, o valor verdadeiro com certa margem de incerteza. Podemos também verificar facilmente que ao efetuarmos repetidas vezes essas mesmas medições, dificilmente obteremos resultados repetidos. Temos novamente dúvidas quanto ao valor verdadeiro do objeto. O problema então se torna um problema estatístico.

Nesta disciplina estudamos como expressar resultados experimentais de forma a incluir o máximo de informações obtidas durante a experimentação, seja realizando uma única medição, ou realizando várias medições em medidas diretas ou indiretas. Para tanto, definimos um valor verdadeiro como um valor numérico que acreditamos esteja próximo probabilisticamente do valor verdadeiro da grandeza, atribuindo-lhe ademais uma margem de segurança, ou seja, o valor mais provável a menos de uma incerteza. Assim utilizamos a Teoria de Erros para obter o valor da medição em um experimento, o mais próximo possível do valor verdadeiro com o erro cometido estimado.

2. Grandezas Físicas

As grandezas físicas são classificadas em duas categorias:

a) **Grendezas físicas fundamentais**: são grandezas independentes das outras. Ex: tempo, comprimento, massa, temperatura termodinâmica, carga elétrica, quantidade de substância, intensidade luminosa, etc. Todas essas
grandezas são originárias de um padrão pré-estabelecido.

b) **Grandezas derivadas:** são todas aquelas não fundamentais (normalmente composta por mais de uma unidade fundamental). Ex: velocidade, aceleração, momento de inércia, etc.

3. Padrões adotados no S.I. (Sistema Internacional estabelecido pelo International Bureau of Weights and Measures (França/Paris)):

- **Comprimento** - metro (m) - percurso percorrido pela luz, no vácuo, em 1/299.792.458 de um segundo, (1983).
- **Tempo** - segundo (s) - duração de 9.192.631.770 períodos da radiação correspondente entre os dois níveis hiperfinos do estado fundamental do Césio-133, (1.967).
- **Corrente Elétrica** - Ampère (A) - A corrente constante que, mantida em dois condutores retilíneos, paralelos, de comprimento infinito, de seção circular desprezível e com os condutores separados pela distância de um metro no vácuo, provoca entre esses condutores uma força igual a 2,0 x 10^{-7} N por metro, (1946).
- **Massa** - quilograma (kg) - como unidade de massa, é considerada a massa de um cilindro de liga platina-irídio (1.889). Um segundo padrão considera a massa do átomo de carbono-12, no qual um acordo internacional, especifica como sendo 1 (u) unidade de massa atômica equivalente a 12 unidades de massa de carbono, ou seja,

\[1 \text{ u} = 1.6605402 \times 10^{-27} \text{ kg}, \]

(1)

com uma incerteza de ± 10 nas duas últimas casas decimais.
Quantidade de substância - mol (mol) - é a quantidade de substância de um sistema contendo o mesmo número de entidades elementares quantos são os átomos de 0,012 quilogramas de carbono 12, (1.971).

Intensidade Luminosa - candela (cd) - é a intensidade luminosa, na direção perpendicular, de uma superfície de 1/600.000 m², de um corpo negro na temperatura de solidificação da platina, sob a pressão de 101,325 N/m², (1.967).

Temperatura Termodinâmica - Kelvin (K) - é a fração 1/273,16 da temperatura termodinâmica do ponto tríplice da H₂O (1.967).

4. Medidas de uma grandeza

A medida direta de uma grandeza é o resultado da leitura de sua magnitude mediante o uso de um instrumento de medida. Ex.: Medida de um comprimento com uma régua graduada, de uma corrente elétrica no amperímetro ou de um intervalo de tempo com um cronômetro.

Uma medida indireta é aquela que resulta da aplicação de uma relação matemática que vincula a grandeza a ser medida com outras diretamente mensuráveis. Ex: velocidade média, área, volume, densidade, frequência etc.

5. Erros de Medidas

5.1 – Desvios

Se repetirmos várias vezes a medida de uma mesma grandeza, encontraremos valores nem sempre iguais. À diferença entre o valor obtido em uma medida e o valor real ou correto dessa grandeza dá-se o nome de erro. As discrepâncias ou erros podem ser atribuídos a vários fatores, tais como: (a) o
método de medida empregado, (b) o instrumento utilizado, (c) a habilidade do operador em efetuar a medida e (d) o meio ambiente.

O erro é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. Matematicamente o erro é a diferença entre o valor medido e o valor real.

O desvio é a diferença entre um valor obtido ao se medir uma grandeza e um valor adotado que mais se aproxima do valor real. Na prática se trabalha na maioria das vezes com desvios e não erros. Matematicamente o desvio é igual à diferença entre o valor medido e o valor mais provável.

5.2 - Erro Absoluto e Erro Relativo

A necessidade de se saber o valor de quaisquer grandezas físicas faz que efetuemos medidas. As medidas que efetuamos, no entanto, nunca são exatas. O erro é inerente ao próprio processo de medida, isto é, nunca será completamente eliminado. Entretanto, o erro pode ser minimizado procurando-se eliminar o máximo possível as suas fontes.

O instrumento que dispomos para tomar o valor de uma medida mais próxima do valor verdadeiro chama-se Teoria dos Erros.
Por ser o erro inerente ao próprio processo de medição de uma grandeza, o valor medido é geralmente indicado na forma:

\[x = x^* \pm \Delta x \]

(2)

onde \(x^* \) é o valor observado em uma única medida ou valor médio de uma série de medidas, e \(\Delta x \) é o erro (absoluto) ou incerteza da medida. O sinal \(\pm \) na equação indica que o valor de \(x \) está compreendido no intervalo:

\[x^* - \Delta x \leq x \leq x^* + \Delta x \]

(3)

Apenas o conhecimento do erro absoluto de uma medida não é suficiente para caracterizar a precisão da mesma. Por exemplo:

Se ao medir uma barra metálica de comprimento \(l = 1,00 \) m, um observador comete um erro \(\Delta l = \pm 2 \) mm e ao medir uma distância de 1 km cometer o mesmo erro, então, vê-se claramente que o erro relativo da 2ª medida é menor.

\[\frac{\Delta l}{l} = \frac{2}{1.000.000} \text{ ou } 0,0002\% \]

(4)

contra

\[\frac{2}{1.000} = 0,2\% \]

(5)

5.3 - Classificação dos Erros

Erros grosseiros: ocorrem devido a falta de prática (imperícia) ou distração do observador. Exemplos: (a) erro de leitura na escala do instrumento, (b) escolha de escala inadequada, (c) erros de cálculo, etc. Estes tipos de erros podem ser evitados pela repetição cuidadosa das medidas.
Erros sistemáticos: caracterizam-se por ocorrerem e conservarem, em medidas sucessivas, o mesmo valor e sinal. Podem ter como origem: defeitos de instrumento de medidas, método de medida errôneo, ação permanente de causas externas, maus hábitos do operador. Nem sempre tem fácil correção e esta deve ser estudada para cada caso particular.

1 - Erros Sistemáticos instrumentais
 (a) Calibração (temperatura e desgaste),
 (b) Qualidade do instrumento de medida,
 (c) Ajuste do zero.

2 - Erros Sistemáticos teóricos
 (a) Modelo teórico,
 (b) Equações teóricas ou empíricas.

3 - Erros Sistemáticos Ambientais
 (a) Temperatura,
 (b) Pressão,
 (c) Umidade,
 (d) Aceleração da gravidade,
 (e) Campo magnético terrestre.

4 - Erros Sistemáticos devido a falhas de procedimento do observador:
 (a) Efeito de paralaxe (não alinhamento correto entre o olho do observador, o ponteiro indicador e a escala do observador),
 (b) Tempo de reação do ser humano (0,7s).
Erros acidentais: são devidos a causas diversas e incoerentes, bem como as causas temporais que variam durante a observação, ou em observações sucessivas, que escapam a uma análise devido à sua imprevisibilidade.

As principais fontes de erros acidentais são:
- instrumentos de medidas
- variações das condições ambientais (pressão, temperatura, umidade, fontes de ruídos)
- fatores relacionados com o próprio observador, flutuações de visão e audição, paralaxe.

5.4 - Precisão e Exatidão de uma Medida

- Uma medida exata é aquela para a qual os erros sistemáticos são nulos ou desprezíveis.
- Uma medida precisa é aquela para a qual os erros acidentais são pequenos.

Se dispusermos de um cronômetro de alta qualidade e medirmos várias vezes o intervalo de tempo que separa duas passagens consecutivas de um pêndulo pela vertical, obteremos por ex: 1,04 s; 1,04s; 1,05s; 1,04s; 1,04s; 1,03s; 1,04s. As determinações do instrumento são precisas, pois todas estão agrupadas em torno de 1,04s. Admitamos, contudo, que o instrumento, embora de excelente qualidade atrasa sistematicamente 30s em uma hora. As medidas não são exatas, mas são precisas.
6. Medida Direta de uma Grandeza

A medida direta da grandeza, com seu erro estimado, podem ser feita de duas formas distintas:

- medindo-se apenas uma vez a grandeza \(x \), e
- medindo-se várias vezes a mesma grandeza \(x \), mantendo as mesmas condições físicas.

No primeiro caso, a estimativa do erro na medida \(\Delta x \) é feita a partir do equipamento utilizado e o resultado será dado por \((x \pm \Delta x)\). Para o segundo caso, consideremos que tenha sido feita uma série de \(n \) medidas para a grandeza \(x \). Descontados os erros grosseiros e sistemáticos, os valores medidos \(x_1, x_2, \ldots, x_n \) não são geralmente iguais entre si; as diferenças entre eles são atribuídas a erros acidentais. O valor mais provável da grandeza que se está medindo pode ser obtido pelo cálculo do valor médio:

\[
\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

(6)

Denomina-se desvio de uma medida a diferença entre o valor obtido \((x_i) \) nessa medida e o valor médio \(\overline{x} \), obtido de diversas medidas. Os valores de \(\delta_i \) podem ser positivos ou negativos.

\[
\delta_i = x_i - \overline{x}
\]

(7)

Pode-se definir também o desvio médio absoluto, \(\delta \), que representa a média aritmética dos valores absolutos dos desvios \(\delta_i \).

\[
\delta = \frac{1}{n} \sum_{i=1}^{n} |\delta_i|
\]

(8)

O desvio médio absoluto é utilizado quando há erros sistemáticos ou quando não temos certeza da minimização dos mesmos. Neste caso, a medida da
grandeza \(x \) será dada por \(x = \bar{x} \pm \delta \).

Para representar o valor de uma grandeza, utiliza-se normalmente a representação

\[
x = \bar{x} \pm \Delta x'
\]

onde \(\Delta x' \) pode ser tanto o desvio médio absoluto \(\delta \), quanto o desvio avaliado no próprio equipamento utilizado para a medida. O valor \(\Delta x' \) mais apropriado é o maior dos dois.

Desvio médio relativo de uma série de medidas é o desvio médio absoluto dividido pelo valor médio

\[
\delta_r = \frac{\delta}{\bar{x}}
\]

(10)

Desvio médio relativo percentual de uma série de medidas é igual ao desvio médio relativo multiplicado por 100.

\[
\delta\% = \delta_r \times 100
\]

(11)

Outra forma de representar o desvio é a utilização do desvio padrão ou desvio médio quadrático que mede a dispersão estatística dos valores da grandeza medida. Quanto maior for o desvio padrão, maior será a dispersão e é definida como:

\[
\sigma = \pm \sqrt{\frac{\sum_{i=1}^{n}(\delta_i)^2}{n-1}}
\]

(12)

sendo \(n \) o número de medidas obtidas. Para \(n > 20 \) podemos usar a equação 10.

\[
\sigma = \pm \sqrt{\frac{\sum_{i=1}^{n}(\delta_i)^2}{n}}
\]

(13)

O desvio padrão somente pode ser utilizado se os erros sistemáticos forem
minimizados ou mesmo eliminados.

Desvio padrão do valor médio de uma série de medidas, σ_x, é o desvio padrão de uma medida dividido pela raiz quadrada do número de medidas na série.

Para $n \leq 20$:

$$\bar{\sigma}_x = \pm \frac{\sigma}{\sqrt{n}} = \pm \sqrt{\frac{\sum(\delta_i)^2}{n(n-1)}}$$ \hspace{1cm} (14)

Para $n > 20$:

$$\bar{\sigma}_x = \pm \sqrt{\frac{\sum(\delta_i)^2}{n^2}}$$ \hspace{1cm} (15)

Da mesma forma que o desvio padrão, só tem sentido utilizar o desvio padrão do valor médio se os erros sistemáticos forem minimizados ou mesmo eliminados.

De um conjunto de medidas, obtemos o seu valor médio. Se pudermos repetir esse conjunto de medidas uma grande quantidade de vezes e, em cada caso, obtivermos um valor médio, o desvio padrão do valor médio mede a incerteza estatística de cada valor médio. Isto é, mede a dispersão dos valores médios da repetição de um conjunto de medidas.

O erro percentual $E\%$ entre o valor teórico e o obtido experimentalmente é dada pela equação abaixo:

$$E\% = \frac{|\text{Valor teórico} - \text{Valor experimental}|}{\text{Valor teórico}} \cdot 100$$ \hspace{1cm} (16)
6.1 - Exemplos

1 - Considere uma série de medidas do diâmetro de um fio \(\phi \), feitas com um instrumento cuja precisão era de 0,05 cm, apresentada na Tabela 1.

Tabela 1 - Mostra os valores obtidos nas medidas do diâmetro \(\phi \) de um fio

<table>
<thead>
<tr>
<th>Medida</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi) (cm)</td>
<td>2,05</td>
<td>2,00</td>
<td>2,05</td>
<td>2,10</td>
<td>1,95</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

Então o valor médio do diâmetro do fio resulta em:

\[
\bar{\phi} = \frac{1}{n} \sum_{i=1}^{n} \phi_i = \frac{1}{5} \sum_{i=1}^{5} \phi_i = 2,03 \text{ cm}
\]

O desvio em cada medida é, portanto:

\[
\delta_i = \phi_i - \bar{\phi}
\]

\[
\delta_1 = 2,05 - 2,03 = 0,02
\]

\[
\delta_2 = 2,00 - 2,03 = -0,03
\]

\[
\delta_5 = 1,95 - 2,03 = -0,08
\]

Calculando o desvio médio absoluto temos:

\[
\delta = \frac{1}{n} \sum_{i=1}^{n} |\delta_i| = 0,04 \text{ cm}
\]

Como o desvio médio absoluto é menor que o erro do instrumento, considere o erro estimado na medida como sendo 0,05 cm.

Assim:
φ = (2,03 ± 0,05) cm

(18)

Caso a precisão do equipamento fosse 0,01, o resultado final da medida seria expresso com o desvio médio absoluto:

φ = (2,03 ± 0,04) cm.

(19)

Na medição de um comprimento ℓ com um paquímetro de precisão 0,05 mm foram obtidos os dados mostrados na Tabela 2.

Tabela 2 - Medidas de comprimento realizadas com um paquímetro

<table>
<thead>
<tr>
<th>Medida</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ (mm)</td>
<td>30,55</td>
<td>30,50</td>
<td>30,45</td>
<td>30,60</td>
<td>30,55</td>
<td>30,40</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

Segue abaixo os cálculos do valor médio, dos desvios de cada medida, do desvio médio absoluto, do desvio médio padrão e do desvio padrão do valor médio.

(a) Valor médio

\[\bar{\ell} = \frac{1}{n} \sum_{i=1}^{n} \ell_i = 30,508 \ m \]

(20)

(b) Valores dos desvios de cada medida (Tabela 3).

Tabela 3 - Valores dos desvios da média de cada medida

<table>
<thead>
<tr>
<th>Medida</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>δi (mm)</td>
<td>0,04</td>
<td>-0,01</td>
<td>-0,06</td>
<td>0,09</td>
<td>0,04</td>
<td>-0,11</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.
(c) Desvio médio absoluto
\[\delta = \frac{1}{n} \sum_{i=1}^{n} | \delta_i | = 0,06 \text{ mm} \]
(21)

(d) Desvio padrão:
\[\sigma_i = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\delta_i)^2} = \sqrt{\frac{0,027}{5}} = 0,07 \text{ mm} \]
(22)

(e) Desvio padrão da média:
\[\bar{\sigma_i} = \sqrt{\frac{0,027}{30}} = 0,03 \text{ mm} \]
(23)

(f) Desvio médio relativo:
\[\delta_r = \frac{\delta}{\ell} = \frac{0,06}{30,508} = 2,0 \times 10^{-3} \]
(24)

(g) Desvio médio percentual:
\[\delta_r = \delta_r . 100 = 0,2 \% \]
(25)

Então a grandeza \(\ell \) é mais bem representada pelo valor:
\[\ell = (30,51 \pm 0,03) \text{ mm} \]
(26)

O desvio padrão médio representa melhor o valor mais provável, pois representa a dispersão da média de vários subconjuntos das \(n \) medidas de uma grandeza e não dos valores individuais, como no caso do desvio médio absoluto.

6.2 - Noções sobre a distribuição dos erros acidentais

Consideremos uma série de medidas feitas para a determinação de uma grandeza física. Descontados os erros grosseiros e sistemáticos, os valores, \(x_1, x_2, x_3, \ldots, x_n \) não são, via de regra, iguais entre si; as diferenças entre eles são atribuídas aos erros acidentais. Examinemos como exemplo, um caso concreto:
As medidas feitas por Baxter e Hale [1], para a determinação da massa atômica do carbono, reproduzidas na Tabela 4.

Sendo todas as medidas feitas com igual cuidado, não há razão para se preferir ou desprezar as demais. O problema consiste em se extrair do conjunto de medidas um valor representativo para a massa atômica do carbono.

Tabela 4 - Medidas da massa atômica do carbono em unidade de massa atômica (u)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12,0080</td>
<td>12,0101</td>
<td>12,0106</td>
</tr>
<tr>
<td>12,0090</td>
<td>12,0101</td>
<td>12,0106</td>
</tr>
<tr>
<td>12,0090</td>
<td>12,0102</td>
<td>12,0107</td>
</tr>
<tr>
<td>12,0095</td>
<td>12,0102</td>
<td>12,0111</td>
</tr>
<tr>
<td>12,0095</td>
<td>12,0102</td>
<td>12,0113</td>
</tr>
<tr>
<td>12,0096</td>
<td>12,0105</td>
<td>12,0116</td>
</tr>
<tr>
<td>12,0097</td>
<td>12,0106</td>
<td>12,0118</td>
</tr>
<tr>
<td>12,0101</td>
<td>12,0106</td>
<td>12,0120</td>
</tr>
<tr>
<td>12,0101</td>
<td>12,0106</td>
<td>12,0129</td>
</tr>
</tbody>
</table>

Fonte: Baxter e Hale (1936).

Na Tabela 4, os N valores medidos (N=27) distribuem-se no intervalo compreendido entre 12,0080 e 12,0129. Para se ter uma melhor ideia dessa distribuição, vamos dividir o intervalo em subintervalos iguais e contar quantos valores estão em cada um deles como mostra a Tabela 5:
A frequência relativa, \(\frac{n_i}{N} \) pode ser representada, em função da massa atômica \(x_i \). O histograma correspondente é apresentado na Figura 1.

Tabela 5 - Distribuição dos subintervalos das medidas de massa atômica do carbono

<table>
<thead>
<tr>
<th>Subintervalo</th>
<th>Frequência Absoluta (n_i)</th>
<th>Frequência Relativa (\frac{n_i}{N})</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,0075 - 12,0084</td>
<td>1</td>
<td>1 / 27</td>
</tr>
<tr>
<td>12,0085 - 12,0094</td>
<td>2</td>
<td>2 / 27</td>
</tr>
<tr>
<td>12,0095 - 12,0104</td>
<td>11</td>
<td>11 / 27</td>
</tr>
<tr>
<td>12,0105 - 12,0114</td>
<td>9</td>
<td>9 / 27</td>
</tr>
<tr>
<td>12,0115 - 12,0124</td>
<td>3</td>
<td>3 / 27</td>
</tr>
<tr>
<td>12,0125 - 12,0134</td>
<td>1</td>
<td>1 / 27</td>
</tr>
</tbody>
</table>

Fonte: Baxter e Hale (1936).

Figura 1 - Histograma da distribuição da frequência relativa em função da massa atômica do carbono

Fonte: Baxter e Hale, 1936.
Pode-se observar que há maior concentração de valores nas proximidades do ponto médio do intervalo que é aproximadamente 12,0105.

Sendo grande o número de causas dos erros acidentais e sendo eles independentes entre si, deve-se esperar que, numa série de medidas, as frequências relativas dos diversos valores diminuam à medida que eles se afastam de seu valor mais provável. Isto se deve ao cancelamento parcial dos erros acidentais devido ao seu caráter aleatório ou fortuito. Essas considerações nos levam a aceitar à média aritmética dos diversos valores - desde que N seja suficiente grande ($N \to \infty$) - como o melhor valor representativo de uma grandeza.

6.3 - Regras simplificadas para utilização dos desvios.

Nos trabalhos comuns de laboratório, onde se realiza uma série de 5 medidas, recomenda-se utilizar o desvio médio absoluto (δ). No caso de medidas de alta precisão em que os erros sistemáticos são minimizados, recomenda-se o desvio padrão do valor médio (σ_x).
7 - Teoria das Aproximações

Os resultados de operações matemáticas apresentam, geralmente, uma quantidade de algarismo significativo maior que a precisão que a medida permite. Deve-se, portanto, eliminar do número os algarismos sem significado, ou seja, fazer arredondamento. As regras abaixo convencionadas são as mais utilizadas no meio científico.

- Quando um número termina com algarismo menor que 5 (0, 1, 2, 3 ou 4) abandonamos o algarismo final simplesmente. Por exemplo: 27,43 é arredondado para 27,4.
- Quando um número termina em 6, 7, 8, 9, ao abandonarmos o algarismo final, somamos uma unidade ao algarismo anterior. Por exemplo: 27,47 é arredondado para 27,5.
- Quando um número termina em 5 e se o algarismo precedente for par, apenas abandonamos o 5, se for ímpar, abandonamos o 5 e somamos uma unidade a ele. Por exemplo: 27,45 é arredondado para 27,4 e 27,35 é arredondado para 27,4.
8 - Operações com desvios

Seja: \(a = (\bar{x} \pm \Delta x) \) e \(b = (\bar{y} \pm \Delta y) \)

1 - Adição:
\[
a + b = (\bar{x} \pm \Delta x) + (\bar{y} \pm \Delta y) = (\bar{x} + \bar{y}) \pm (\Delta x + \Delta y)
\]

2 - Subtração:
\[
a - b = (\bar{x} \pm \Delta x) - (\bar{y} \pm \Delta y) = (\bar{x} - \bar{y}) \pm (\Delta x + \Delta y)
\]

3 - Multiplicação:
\[
a \cdot b = (\bar{x} \pm \Delta x) \cdot (\bar{y} \pm \Delta y) = (\bar{x} \cdot \bar{y}) \pm (\Delta x \cdot \bar{y} + \bar{y} \cdot \Delta x)
\]

4 - Multiplicação por uma constante \(c \):
\[
c \cdot a = c (\bar{x} \pm \Delta x) = c. \bar{x} \pm c. \Delta x
\]

5 - Divisão:
\[
a / b = (\bar{x} \pm \Delta x) / (\bar{y} \pm \Delta y) = \bar{x} / \bar{y} \pm (\Delta x \cdot \bar{y} + \bar{y} \cdot \Delta x) / \bar{y}^2
\]

6 - Coseno:
\[
\cos (a) = \cos (\bar{x} \pm \Delta x) = \cos \bar{x} \pm \Delta x . \text{sen} \bar{x}
\]

7 - Seno:
\[
\text{sen} (a) = \text{sen} (\bar{x} \pm \Delta x) = \text{sen} \bar{x} \pm \Delta x . \cos \bar{x}
\]

8 - Logaritmo:
\[
\log (a) = \log (\bar{x} \pm \Delta x) = \log \bar{x} \pm (\Delta x / \bar{x})
\]

9 - Exponencial:
\[
c^a = e^{\bar{x} \pm \Delta x} = e^{\bar{x}} \pm (e^{\bar{x}} \ln c) \Delta x
\]

10 – Raiz quadrada: \((\bar{x} \pm \Delta x)^{1/2} = \sqrt{\bar{x}} \pm \frac{\Delta x}{2 \sqrt{\bar{x}}}. \)
9 - Ordem de grandeza e algarismos significativos

9.1 - Ordem de grandeza

Ordem de grandeza é a potência de 10 com expoente inteiro que mais se aproxima do valor medido de uma determinada grandez a a ser analisada. Qualquer que seja o número (q) que corresponde a essa medida em módulo, está compreendida entre duas potências de 10, inteiras e consecutivas, ou seja, $10^n \leq |q| < 10^{n+1}$. Para obter a ordem de grandeza de um número, devemos inicialmente colocá-la em notação científica (por ex: $q = a \cdot 10^n$), com o número "a" obedecendo à relação $1 \leq |a| < 10$. A decisão de usar 10^n ou 10^{n+1} (ordem de grandeza n ou n +1) é feita comparando-se o módulo de "a" com o valor $10^{1/2}$, uma vez que a variação do expoente é igual à unidade. Assim temos:

- Se $|a| \leq 3,16$ a ordem de grandeza é 10^n,
- Se $|a| > 3,16$ a ordem de grandeza é 10^{n+1}.

O número $2,7 \times 10^6$ possui portanto ordem de grandeza 10^6 e o número $5,9 \times 10^6$ possui ordem de grandeza igual a $10^{6+1} = 10^7$.

9.2 Algarismos significativos

Suponha que uma pessoa ao fazer uma série de medidas do comprimento de uma barra (ℓ), tenha obtido os seguintes resultados:

- comprimento médio $\bar{\ell} = 92,8360$ cm.
- erro estimado $\Delta \ell = 0,312$ cm.

Supondo que o erro da medida está na casa dos décimos de cm, não faz sentido fornecer os algarismos correspondentes dos centésimos ou milésimos de
cm e assim por diante. Isso quer dizer que o erro estimado em uma medida deve conter apenas o seu **algarismo mais significativo**. Os algarismos menos significativos do erro são utilizados apenas para efetuar arredondamentos ou simplesmente são desprezados. Neste caso, \(\Delta l \) deve ser representado apenas por:

\[
\Delta l = 0,3 \text{ cm} \tag{27}
\]

Os algarismos 9 e 2 do valor médio são exatos, porém o algarismo 8 já é duvidoso, pois o erro estimado afeta a casa que lhe corresponde. Deste modo, os algarismos 3 e 6 são desprovidos de significado físico e não é correto escrevê-los. Estes algarismos são utilizados para efetuar arredondamentos ou simplesmente são desprezados. Sendo assim, o modo correto de expressar o resultado desta medida será então:

\[
l = (92,8 \pm 0,3) \text{ cm} \tag{28}
\]

Nos casos em que o erro da medida não é estimado devemos também escrever o algarismo significativo com critério. Em problemas de engenharia, os dados raramente são conhecidos com uma precisão superior a 2%. Portanto é desnecessário realizar cálculos com precisão superior a 2%.

Em resumo: algarismos significativos são todos os algarismos corretos de um número mais o primeiro duvidoso.

Exemplos

- 0,00007 tem 1 algarismo significativo.
- 0,0080 tem 2 algarismos significativos.
- 23,00 tem 4 algarismos significativos.
- 3,2x10^5 tem 2 algarismos significativos.
9.3 Apresentação final de grandezas físicas

Uma grandeza física pode ser apresentada como \(X = \bar{x} \pm \Delta x \), onde \(\bar{x} \) é o valor médio da grandeza e \(\Delta x \) é o desvio. O desvio deve ser escrito com um único algarismo significativo e o valor médio da grandeza deve ter a mesma precisão do desvio.

Vejamos um exemplo: Se após uma série de medidas o valor da área de uma chapa metálica for apresentada como \(A = (42,2921 \pm 0,03875) \) m\(^2\) todos os algarismos devem ser considerados para efeitos de cálculo. No entanto, para apresentação final a grandeza deve ser reescrita. No exemplo apresentado o desvio afeta a segunda casa decimal do valor médio da área, desta forma, os outros algarismos posteriores perdem o significado, isto é, não são significativos e devem ser desprezados. Assim, escreve-se o resultado final da seguinte maneira:

\[
A = (42,29 \pm 0,04) \text{ m}^2,
\]

ou em notação científica, como

\[
A = (4,229 \pm 0,004) \times 10 \text{ m}^2
\]

O desvio foi obtido a partir da regra do arredondamento e o valor médio da grandeza foi reescrito com a precisão do desvio.

A Tabela 6 mostra a forma errada e a correta de se apresentar medidas de algumas grandezas físicas.

Tabela 6 – Apresentação errada e correta dos valores de algumas grandezas físicas

<table>
<thead>
<tr>
<th>Grandeza Física</th>
<th>Errada</th>
<th>Correta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprimento</td>
<td>((3,4563 \pm 0,0037)) m</td>
<td>((3,456 \pm 0,004)) m</td>
</tr>
<tr>
<td>Área</td>
<td>((54,3524 \pm 1,884)) m(^2)</td>
<td>((5,4 \pm 0,2) \times 10) m(^2)</td>
</tr>
<tr>
<td>Volume</td>
<td>((346,43 \pm 13,2)) m(^3)</td>
<td>((3,5 \pm 0,1) \times 10) m(^3)</td>
</tr>
<tr>
<td>Intervalo de tempo</td>
<td>((345765,31546 \pm 205,440)) s</td>
<td>((3,458 \pm 0,002) \times 10) s</td>
</tr>
<tr>
<td>Carga elétrica</td>
<td>((0,03464 \pm 0,000489)) C</td>
<td>((3,46 \pm 0,05) \times 10) C</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.
10 - Operações com algarismos significativos

10.1 - Adição e subtração

A operação se processa em função do **elemento de menor precisão**, fazendo-se os devidos arredondamentos.

Exemplo:

\[
X = 3,25 + 1,266 + 3 = 7,516 \quad \text{Resultado final: } X = 8.
\]

\[
2,405 + 4,183 + 3,0 + 0,5 = 10,088 \quad \text{Resultado final: } X = 10,1
\]

10.2 - Multiplicação e divisão

Na multiplicação ou divisão, (a) identificar o **elemento de menor precisão**. (b) Escrever o resultado com o número de algarismos significativos deste elemento ou no máximo esse número mais um. No caso das parcelas apresentarem a mesma precisão, o número de algarismos significativos deve ser correspondente ao do elemento que apresentar o menor número de algarismos significativos.

Exemplo:

\[
X = 425,3 \times 1,3 = 552,89 \quad \Rightarrow \quad \text{Resultado final: } X = 5,5 \times 10^2 \text{ ou } 553.
\]

\[
X = 6,525 \times 41 = 267,525 \quad \Rightarrow \quad \text{Resultado final: } X = 2,7 \times 10^2 \text{ ou } 268.
\]

\[
X = 23,55 \div 1,2 = 19,625 \quad \Rightarrow \quad \text{Resultado final: } X = 20 \text{ ou } 19,6.
\]
11 - RETAS DE MÍNIMOS QUADRADOS

Ao conjunto de N pontos experimentais \((x_2, y_2), \ldots, (x_n, y_n)\) pode ser ajustada uma reta, chamada de reta de mínimos quadrados e que será dada pela equação:

\[
y = ax + b
\]

onde \(a\) e \(b\) são constantes determinadas mediante a resolução do seguinte conjunto de equações:

\[
\sum y = bN + a\sum x
\]

\[
\sum (x.y) = b\sum x + a\sum x^2
\]

Essas equações são denominadas de equações normais da reta. Substituindo no sistema de equações, os valores de \(N\), \(\Sigma x\), \(\Sigma y\), \(\Sigma(x.y)\) e \(\Sigma x^2\) teremos os coeficientes \(a\) e \(b\). A Tabela 7 apresenta valores de \(y\) em função de \(x\).

Tabela 7 – Valores de \(y\) em função de \(x\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y(x))</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

Os valores da reta \(y(x)\) com os coeficientes \(a\) e \(b\) obtidos usando o sistema de equações 30 e 31, normais da reta, são apresentados da Tabela 8.

Tabela 8 – Valores de \(y\) em função de \(x\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y(x))</td>
<td>1,2</td>
<td>2,5</td>
<td>3,1</td>
<td>4,4</td>
<td>5,6</td>
<td>6,3</td>
<td>7,5</td>
<td>9,4</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

Esses pontos são de uma reta cuja equação é apresentada abaixo:
y (x) = 0,63x + 0,59 \hspace{1cm} (31)

OBSERVAÇÃO:

De maneira geral, os desvios podem ser determinados usando-se os conceitos de derivadas, ou seja,

Ex.: Operação com uma função trigonométrica

(a). \(\text{sen} (\theta \pm \Delta \theta) = \text{sen}\theta \pm \Delta \theta. \frac{d(\text{sen}\theta)}{d\theta} = \text{sen}\theta \pm \Delta \theta. \cos\theta \)

(b). \(\ln (A \pm \Delta A) = \ln A \pm \Delta A. \frac{d(\ln A)}{dA} = \ln A \pm \Delta A/A \)

que são as mesmas expressões apresentadas no tópico referente às operações básicas com algarismos significativos e desvios.

XII - Referências Bibliográficas

1º EXPERIMENTO: MEDIDAS FÍSICAS - PARTE A

1. Objetivos: Medidas lineares usando régua e paquímetro; aplicações de Teoria de Erros e Algarismos Significativos.

2. Introdução

Para efetuarmos a medida do comprimento de um lápis podemos utilizar vários instrumentos. A utilização de uma régua milímetrada, um paquímetro ou até mesmo um pedaço de barbante pré-calibrado. Cabe ao experimentador discernir qual o instrumento mais adequado àquela medida. Essa adequação deve levar em conta a reprodutibilidade da medida efetuada e a precisão que o experimentador necessita ter nessa determinação.

Quando tratamos teoricamente com grandezas numéricas, temos a impressão de lidarmos com valores absolutos, que independem do experimentador ou do instrumento de medida utilizado para obtê-los. Você terá oportunidade de verificar que, quando afirmamos ser uma dada massa igual a 1 grama ou um dado comprimento é de 10 cm estamos fazendo simplificações. Na realidade, quando obtemos experimentalmente uma massa de 1 g ou 1,0 g esses valores descrevem fisicamente a grandeza de forma distinta. A forma de obter e operar com dados experimentais exige um tratamento adequado. Tal procedimento é chamado Teoria de Erros. Elementos desta teoria e o conceito de Algarismos Significativos serão enfocados em nossos experimentos. Os processos de medidas serão o estatístico e o de medida direta, proporcionando tratamento de dados específicos para cada caso.

Em termos de propagação de erros são consideradas as quatro operações matemáticas descritas anteriormente (ver operações com desvio).

2.1. Paquímetro

O paquímetro é um instrumento de precisão utilizado para medir as dimensões lineares internas, externas e de profundidade de um objeto. Trata-se de uma régua principal sob a qual está montada uma segunda haste que pode deslizar sob a régua. A régua é graduada em polegadas e em milímetros. A haste deslizante possui uma pequena escala, denominada vernier que permite fazer uma medida com precisão de 1/10 a 1/50 de milímetro. Um desenho esquemático do paquímetro [1] está mostrado na Figura 1.

Figura 1 - Elementos do paquímetro

Legenda: (1) orelha fixa, (2) orelha móvel, (3) vernier em polegadas, (4) parafuso de trava, (5) cursor, (6) escala fixa em polegadas, (7) bico fixo, (8) encosto fixo, (9) encosto móvel, (10) bico móvel, (11) vernier em milímetros, (12) impulsor, (13) escala fixa em milímetros, (14) haste de profundidade.
Fonte: Novaes, 2011.

A resolução do paquímetro é definida pela divisão do vernier. Devido ao número de divisões deste, a resolução é obtida ao dividir o valor do menor traço gravado na escala principal (geralmente 1 mm ou 1/16”) pelo número de traços gravados no vernier. Então temos:

• Para paquímetros em que o menor traço na escala principal é 1 mm e o vernier está dividido em 20 traços, a resolução deste paquímetro será:
 \[\text{Resolução} = \frac{1}{20} = 0,05 \text{ mm} \]
• Igualmente, se o menor traço na escala principal é 1 mm e o vernier está dividido em 50 traços, a resolução deste paquímetro será:
 \[\text{Resolução} = \frac{1}{50} = 0,02 \text{ mm} \]
• No sistema inglês, para paquímetros em que o menor traço na escala principal é 1/16 polegadas e o vernier dividido em oito traços, a resolução deste paquímetro será:
 \[\text{Resolução} = \frac{1/16}{8} = 1/128" \]
• Da mesma forma, se o menor traço na escala principal é 0,025” e o vernier está dividido em 25 traços, a resolução deste paquímetro será:
 \[\text{Resolução} = \frac{0,025}{25} = 0,001" \]

É utilizado em medições internas, externas, de ressaltos e de profundidade como exemplificado na Figura 2. Para efetuarmos uma medida utilizando um paquímetro precisamos avaliar duas quantidades:

(a) A leitura da escala principal correspondente ao traço imediatamente inferior ao zero do vernier.
(b) Adicionar a distância entre o traço zero do vernier e a leitura realizada na escala principal. Essa distância é obtida pela verificação de qual traço no vernier coincide melhor com um traço qualquer na escala principal.
(c) Um exemplo de leitura em um paquímetro é mostrado na Figura 3. O zero do vernier está logo após a marca de 5,0 mm da escala principal. Além disso, a 4ª marca do vernier coincide com uma marca qualquer da

escala principal (não importa qual). Como esse é um vernier de precisão
\(d = 0,05 \text{ mm} \), temos que a 4ª marca do vernier equivale a 0,40 mm.

Figura 2 – Paquímetro: medição interna, externa, de ressalto e de profundidade

![Figura 2](image)

Fonte: Novaes, 2011.

Figura 3 – Realização de uma leitura de uma medida em um paquímetro

![Figura 3](image)

Fonte: Suaide, 2008.

Assim, a leitura efetuada é \(L = 5,00 \) (escala principal) + 0,40 (vernier) mm.

Um aspecto importante do vernier é o fato de não ser possível estimar um valor intermediário entre a 3ª e 4ª marcas ou entre a 4ª e 5ª marcas do vernier. Neste caso, a incerteza do paquímetro não é metade da sua menor divisão \([*)\] e sim o valor da sua menor divisão. Nesse caso, podemos escrever a medida como sendo:

\[
L = (5,40 \pm 0,05) \text{ mm}
\]

Para obter resultados satisfatórios com o paquímetro (bem como outros instrumentos de medida de comprimento) devemos estar atentos aos seguintes cuidados:

1. O contato entre os encostos das orelhas do paquímetro com as superfícies da peça a ser medida deve ser suave para não danificá-la e resultar em medidas falsas.
2. Manter a posição correta do paquímetro em relação à peça. Inclinações do instrumento alteram as leituras.
3. Manter as superfícies limpas.
4. Medir a peça em temperatura ambiente, procurando evitar possíveis dilatações.
5. Ao observar o valor da medida, manter a visão na direção perpendicular à escala do instrumento, evitando erros de paralaxe.

3. Experimento

3.1 Materiais Utilizados: São fornecidos os seguintes instrumentos: régua, paquímetro objetos de diferentes geometrias.

3.2 Procedimento Experimental

(a) - Faça três medidas da espessura, largura e comprimento da placa de alumínio com a régua milimetrada. Organize seus dados em uma tabela contendo: os valores das grandezas, as incertezas e as unidades de medida, conforme Tabela 1.

Tabela 1 – Dimensões da placa de alumínio

<table>
<thead>
<tr>
<th>Medida</th>
<th>Espessura (mm)</th>
<th>Largura (mm)</th>
<th>Comprimento (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{x} \pm \Delta x) ou (\bar{x} \pm \delta)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: Medidas realizadas com uma régua milimetrada e os valores médios com suas respectivas incertezas ou desvios.
Fonte: Elaborado pelo autor.

(b) - A partir dos valores \(\bar{x} \pm \Delta x \) ou \(\bar{x} \pm \delta \) da espessura, largura e comprimento, obtidos na Tabela 1, calcule a área total da placa com a respectiva incerteza \((\bar{A} \pm \Delta A) \).

(c) - Faça 10 medidas da espessura, largura e comprimento da placa de alumínio com o paquímetro e apresente-as na Tabela 2.
(d) - A partir dos valores $\bar{x} \pm \sigma_x$ da espessura, largura e comprimento, obtidos na Tabela 2, calcule a área total da placa com a respectiva incerteza ($\bar{A} \pm \Delta A$).

(e) – Compare e discuta os resultados obtidos nos itens (b) e (d).

(f) – Obtenha a área total ($A \pm \Delta A$) somente com o primeiro valor de cada uma das grandezas da placa de alumínio da Tabela 2 e compare o resultado com aquele obtido no item (d). Calcule o erro percentual $E\%$ entre A e \bar{A} e preencha a Tabela 3.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Espessura (mm)</th>
<th>Largura (mm)</th>
<th>Comprimento (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$\bar{x} \pm \sigma_x$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.
Tabela 3 – Área total da placa de alumínio obtida pela primeira medida A e pelo valor médio \bar{A}

<table>
<thead>
<tr>
<th>$A \pm \Delta A$ (1ª medida)</th>
<th>$\bar{A} \pm \Delta A$</th>
<th>$E%$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

4. Cuidados Especiais com os Instrumentos

Limpar cuidadosamente após o uso. Normalmente, utilize um pano seco para retirar eventuais partículas de pó e sujeira de maneira geral. Antes de guardá-los durante um longo período, passar óleo fino antiferrugem e manter as faces de medição ligeiramente separadas e destravadas. De preferência para mantê-los nos seus respectivos estojos.

5. Referências bibliográficas

1º EXPERIMENTO: MEDIDAS FÍSICAS - PARTE B

1. Objetivos: Medidas lineares usando micrômetro; aplicações de Teoria de Erros e Algarismos Significativos.

2. Introdução

Nesta parte do experimento “Medidas Físicas” serão realizadas medidas lineares utilizando o micrômetro. Uma balança também será utilizada para medir as massas de alguns objetos. O cálculo da massa específica (densidade) de alguns materiais será determinado levando-se em consideração os algarismos significativos, a Teoria de Erros e a propagação de erros. O valor obtido será comparado com os encontrados na literatura.

2.1 Micrômetro

Quando a precisão desejada em uma medida for maior que a oferecida pelo paquímetro deve-se utilizar um micrômetro. A Figura 1 mostra a nomenclatura de suas principais partes.

Figura 1 – Esquema de um micrômetro e os principais componentes

Fonte: Elaborado pelo autor.
O princípio de funcionamento do micrômetro assemelha-se a um sistema formado por um parafuso móvel e uma porca fixa. Para cada volta completa o parafuso sofre um deslocamento igual ao passo do parafuso. Podem-se avaliar frações menores que uma volta, dividindo a “cabeça” do parafuso. Veja a ilustração da Figura 2.

Figura 2 – Sistema formado por um parafuso móvel e uma porca fixa

2.2 - **Leitura com o micrômetro**

O objeto a ser medido deve ser colocado entre a espera fixa e a espera móvel que será movida até quase tocar o objeto. A partir desta posição, deve-se prosseguir o avanço do parafuso fazendo uso da catraca. A catraca é um dispositivo de segurança, se não se fizer uso deste dispositivo poderão surgir forças consideráveis acarretando na quebra do objeto examinado ou na inutilização do micrômetro.
A Figura 3 apresenta um exemplo de como se processa a leitura quando se utiliza um micrômetro. O traço visível corresponde a uma leitura de 17,0 mm (traço superior) mais 0,5 mm, pois o tambor também ultrapassou o traço inferior. Como o tambor possui 50 traços equivalentes a um passo de 0,5 mm, a leitura efetuada no tambor está entre 0,31 e 0,32 mm.

Figura 3 – Exemplo de leitura em um micrômetro

Fonte: Elaborado pelo autor.

Figura 4 – No tambor a leitura está entre 0,31 e 0,32

Nota: Estimativa: 0,007[^*].

Fonte: Elaborado pelo autor.

Por último, estima-se esse valor intermediário como sendo 0,007 mm, conforme mostra a Figura 4. Assim, a leitura efetuada vale:

\[L = 17,5 \text{ (principal)} + 0,31 \text{ (tambor)} + 0,007 \text{ (estimativa)} \Rightarrow \]

\[L = 17,817 \text{ mm} \]

Como a incerteza do micrômetro é metade da sua menor divisão (0,01 mm)^{**} temos que:

\[L = (17,817 + 0,005) \text{ mm} \]

3. Experimento

3.1 Materiais Utilizados: São fornecidos os seguintes instrumentos: micrômetro e objetos de diferentes geometrias.

3.2 Procedimento Experimental

Organize seus dados em uma tabela contendo: a grandeza medida, o valor médio, a incerteza e a unidade de medida.

a1 - Faça 5 medidas do diâmetro da esfera metálica com um micrômetro e apresente os dados na Tabela 1.

Tabela 1 – Medidas do diâmetro da esfera metálica realizadas com um micrômetro

<table>
<thead>
<tr>
<th>Medida</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>(\overline{D} \pm \Delta D) ou (\overline{D} \pm \delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diâmetro (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

a2 - Faça 5 medidas da massa da esfera metálica com a balança e apresente os dados na Tabela 2.

Tabela 2 – Medidas da massa da esfera metálica usando uma balança de precisão

<table>
<thead>
<tr>
<th>Medida</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>$\bar{m} \pm \Delta m$ ou $\bar{m} \pm \delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

a3 - Faça 5 medidas do diâmetro e da altura do cilindro metálico com o micrômetro e apresente os dados na Tabela 3.

Tabela 3 – Diâmetro e altura do cilindro metálico usando um micrômetro

<table>
<thead>
<tr>
<th>Medida</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>$\bar{x} \pm \Delta x$ ou $\bar{x} \pm \delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diâmetro (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

a4 - Faça 5 medidas da massa do cilindro metálico usando uma balança de precisão e apresente os dados na Tabela 4.

Tabela 4 – Massa do cilindro metálico usando uma balança de precisão

<table>
<thead>
<tr>
<th>Medida</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>$\bar{m} \pm \Delta m$ ou $\bar{m} \pm \delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massa (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

a5 - A partir dos valores médios (com o seus respectivo desvio) obtidos nas Tabelas 1 e 3, calcule o volume da esfera e do cilindro com a respectiva incerteza
(V±ΔV) e preencha a Tabela 5. Obs: Utilize nos cálculos a propagação de erros (cálculo com desvios).

<table>
<thead>
<tr>
<th>Objeto</th>
<th>V ± ΔV (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esfera</td>
<td></td>
</tr>
<tr>
<td>Cilindro</td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

a6 - A partir dos valores obtidos nas Tabelas 1 e 2, calcule a massa específica da esfera metálica com a respectiva incerteza (ρ ± Δρ.). Compare com o valor encontrado na literatura.

a7 - A partir dos valores obtidos nas Tabelas 3 e 4, calcule a massa específica cilindro metálico com a respectiva incerteza (ρ ± Δρ.). Compare com o valor encontrado na literatura.

a8 – Discuta os resultados obtidos em a6 e a7.

4. Referências bibliográficas

TABELAS, QUADROS, GRÁFICOS E FUNÇÕES

1 – Tabelas e Quadros

Tabelas e quadros têm um formato muito parecido, porém são usados para armazenar informações de tipos diferentes. De forma geral, as tabelas armazenam informações numéricas e possuem as bordas laterais abertas. Devemos evitar linhas verticais e as linhas horizontais devem se limitar, sempre que possível, ao cabeçalho e ao rodapé da tabela. Os quadros armazenam informações textuais e apresentam todas as bordas fechadas.

A Associação Brasileira de Normas Técnicas (ABNT) define normas para tabelas e figuras (NBR 6029 e NBR 6822). Nessas normas, há distinção entre tabelas e quadros. Segundo a ABNT, tabelas apresentam informações tratadas estatisticamente e quadros contêm informações textuais agrupadas em colunas [1].

As tabelas têm por finalidade apresentar os resultados obtidos em uma série de medidas ou coleção de dados, quer isoladamente, quer em correspondência com outras grandezas. As tabelas devem ser construídas de acordo com as seguintes regras:

a. Nomes das grandezas envolvidas e suas respectivas unidades.

b. Os valores numéricos devem ser apresentados de acordo com a precisão do instrumento de medida utilizado.

c. O título e o comentário da tabela devem ser apresentados na parte superior da tabela.

d. O comentário deve ser conciso e claro o suficiente para que uma pessoa ao folhear o trabalho possa entender do que se trata a tabela, sem a necessidade de recorrer ao texto.

Segue abaixo um exemplo de tabela que apresenta os dados da posição e da velocidade de três esferas em função do tempo.

Tabela 1 - Medidas da posição e da velocidade das esferas em função do tempo

<table>
<thead>
<tr>
<th>Tempo (s)</th>
<th>Esfera 1 (Δy = 0,02 cm)</th>
<th>Esfera 2 (Δv = 0,5 cm/s)</th>
<th>Esfera 3 (Δy = 0,02 cm)</th>
<th>Esfera 2 (Δv = 0,5 cm/s)</th>
<th>Esfera 3 (Δy = 0,02 cm)</th>
<th>Esfera 2 (Δv = 0,5 cm/s)</th>
<th>Esfera 3 (Δy = 0,02 cm)</th>
<th>Esfera 2 (Δv = 0,5 cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>48,04</td>
<td>5,39</td>
<td>1,08</td>
<td>96,5</td>
<td>50,7</td>
<td>35,5</td>
<td>96,5</td>
<td>50,7</td>
</tr>
<tr>
<td>20</td>
<td>50,45</td>
<td>6,45</td>
<td>2,06</td>
<td>83,6</td>
<td>48,5</td>
<td>32,3</td>
<td>83,6</td>
<td>48,5</td>
</tr>
<tr>
<td>30</td>
<td>52,78</td>
<td>9,32</td>
<td>3,10</td>
<td>76,3</td>
<td>39,3</td>
<td>35,2</td>
<td>76,3</td>
<td>39,3</td>
</tr>
<tr>
<td>40</td>
<td>56,34</td>
<td>15,04</td>
<td>6,81</td>
<td>71,3</td>
<td>28,5</td>
<td>23,9</td>
<td>71,3</td>
<td>28,5</td>
</tr>
<tr>
<td>50</td>
<td>59,21</td>
<td>25,76</td>
<td>36,24</td>
<td>65,3</td>
<td>15,3</td>
<td>17,1</td>
<td>65,3</td>
<td>15,3</td>
</tr>
<tr>
<td>60</td>
<td>60,75</td>
<td>48,79</td>
<td>100,43</td>
<td>59,3</td>
<td>5,2</td>
<td>10,5</td>
<td>59,3</td>
<td>5,2</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

Os **quadros** têm por finalidade a síntese de informações textuais. Segue abaixo um exemplo de quadro onde são apresentados três classes de materiais quanto a sua condutividade elétrica.
Quadro 1 – Classe de materiais quanto à condutividade elétrica

<table>
<thead>
<tr>
<th>Classe de Materiais</th>
<th>Exemplos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolantes</td>
<td>Borracha, Cortiça, Vidros, Cerâmicas convencionais, Madeira, Parafina.</td>
</tr>
<tr>
<td>Semicondutores</td>
<td>Germânio, Silício, Arseneto de Gálio, Fosfeto de Gálio, Sulforeto de Cádmio.</td>
</tr>
<tr>
<td>Condutores</td>
<td>Cobre, Ferro, Prata, Ouro, Platina.</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

2. Gráficos

Os gráficos têm por objetivo mostrar o tipo de correspondência existente entre os valores de duas grandezas que variam entre si.

Os gráficos devem ser construídos de acordo com as seguintes regras gerais:

a. Coloque título e comentário.

b. O título e o comentário devem ser apresentados na parte inferior do gráfico.

c. Coloque a grandeza a ser representada e sua unidade, de maneira clara, em cada eixo coordenado. Fora disso, os eixos devem conter apenas os números necessários à leitura das divisões. Não coloque valores especiais.

d. Escolha as escalas de maneira a não obter um gráfico mal dimensionado.

e. A linha que passa pelos pontos é uma contribuição subjetiva do observador às medidas. Esta não deve se destacar mais que os
próprios pontos. Procure traçar a linha de maneira que a distância média entre os pontos seja mínima.

f. Quando necessário, pode-se indicar o intervalo de confiança das medidas com o auxílio de barras.

g. Se os pontos provierem de diversas séries de medidas diferentes, é conveniente distingui-los usando símbolos diferentes tais como: círculos, quadrados, triângulos etc. Uma legenda deve ser utilizada para explicar o significado dos símbolos utilizados (Figura 1).

Figura 1 – Medida da posição em função do tempo

![Gráfico de posição em função do tempo](image)

Fonte: Elaborado pelo autor.

Um gráfico deve ser inserido o mais próximo possível do texto onde é citado e poderá ser apresentado em um relatório conforme o exemplo da Figura 2.
Figura 2 – Apresentação de um gráfico no relatório

(a) Papel gráfico colado e devidamente dobrado na folha do relatório. (b) Papel gráfico desdobrado.

Fonte: Elaborado pelo autor.

3 – Funções

Nos gráficos cartesionos, a linha que une os diferentes pontos assinalados é uma curva que pode, em alguns casos, ser representada por uma função conhecida. O gráfico mais fácil de ser traçado e analisado é uma reta. Logo, nos casos onde existe a possibilidade de previsão da forma da função, é comum efetuarem-se transformações em uma ou em ambas variáveis, de modo a se obter uma reta.

Existem três casos que são mais frequentes no curso de laboratório:

1º Caso:

\[y = ax + b \]
Função linear

\(y = \)
2º Caso:
\[y = ax^n \]
Função Potência

3º Caso:
\[y = ae^{kx} \]
Função Exponencial

Vamos, contudo, dar início à construção de gráficos utilizando funções lineares que não requerem a transformação de variáveis.

4 - Gráficos de Funções Lineares

4.1 – Módulo de Escala

Na construção de um gráfico, a primeira providência deve ser o estabelecimento do módulo da escala de cada eixo. O módulo da escala \(\lambda \) estabelece uma relação entre certo comprimento da escala e certa quantidade da grandeza a ser representada.

\[
\lambda = \frac{\text{Comprimento disponível do papel}}{\text{Intervalo da grandeza medida}} = \frac{L}{|f(x_n) - f(x_1)|}
\]

(4)

Sempre que possível, é conveniente adotar um número inteiro para \(\lambda \), arredondando-se o valor obtido para o inteiro imediatamente menor.

Vejamos um exemplo da utilização do módulo de escala: A Tabela 2 apresenta a dependência da força com a distância. O comportamento da força com a distância pode ser observada em um gráfico colocando-se os valores das grandezas físicas em um papel milimetrado de 270 mm x 180 mm.
Tabela 2 - Dependência da Força F com a distância d

<table>
<thead>
<tr>
<th>Medida</th>
<th>F (N)</th>
<th>d (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,0</td>
<td>5,2</td>
</tr>
<tr>
<td>2</td>
<td>4,0</td>
<td>10,4</td>
</tr>
<tr>
<td>3</td>
<td>8,0</td>
<td>15,6</td>
</tr>
<tr>
<td>4</td>
<td>12,0</td>
<td>20,8</td>
</tr>
<tr>
<td>5</td>
<td>16,0</td>
<td>26,0</td>
</tr>
<tr>
<td>6</td>
<td>20,0</td>
<td>31,3</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

No eixo das ordenadas o valor de L pode, por exemplo, ser igual a 260 mm. De acordo com a Tabela 2, a grandeza física $f(x_n)$ será igual a 20,0 N e $f(x_1) = 0,0$ N. Assim, obtém-se $\lambda_F = 13$ mm/N (o intervalo de 13 milímetros na ordenada equivale a 1 N). Assim, a distância em milímetros da origem do eixo das ordenadas será igual a $\lambda_d.(F_i)$ para a i-ésima força.

No eixo das abscissas, o valor de L pode ser 160 mm, por exemplo. Se desejarmos que o valor $d = 0,0$ mm esteja presente no gráfico, o valor de $f(x_n)$ será 31,3 mm e o valor de $f(x_1)$ será zero e o módulo de escala será $\lambda_d = 5$ mm/mm (o intervalo de 5 milímetros na abscissa equivale a 1 mm da grandeza d). Assim, a distância em milímetros da origem do eixo das abscissas será igual a $\lambda_d.(d_i)$ para a i-ésima distância. No entanto, se desejarmos que o gráfico se inicie em $d = 5,2$ mm, o módulo de escala será $\lambda_d = 160/[31,3 - 5,2] = 6$ mm/mm. Assim, a distância em milímetros da origem do eixo das abscissas será igual a $\lambda_d.[d_i - 5,2]$ para a i-ésima distância.
4.2 – Equação da Reta

As retas são gráficos típicos das funções da forma:

\[y(x) = ax + b \]

(5)

A constante a é o coeficiente angular da reta, sendo definido como,

\[a = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x} \]

(6)

onde \((x_1, y_1)\) e \((x_2, y_2)\) são dois pontos da reta escolhidos bastante afastados um do outro.

Figura 2 – Determinação das constantes a e b da função linear

Fonte: Elaborado pelo autor.
A constante \(b \) é chamada de coeficiente linear. No ponto \((0,b)\) a reta corta o eixo das ordenadas e, portanto,

\[
y(0) = a \cdot 0 + b \quad \text{ou} \quad y = b.
\] (7)

Exercício:

Utilize folhas de papel milimetrado para traçar os gráficos da velocidade em função do tempo (Tabela 1) e da aceleração em função do tempo (Tabela 2) de uma partícula. A seguir, obtenha os coeficientes característicos e escreva a expressão analítica para a velocidade e para a aceleração.

Tabela 1 - Velocidade (m/s) em função do tempo (s)

<table>
<thead>
<tr>
<th>(v) (m/s)</th>
<th>(t) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,0</td>
<td>0,00</td>
</tr>
<tr>
<td>5,0</td>
<td>1,12</td>
</tr>
<tr>
<td>8,6</td>
<td>2,11</td>
</tr>
<tr>
<td>10,6</td>
<td>3,00</td>
</tr>
<tr>
<td>14,5</td>
<td>4,31</td>
</tr>
<tr>
<td>22,5</td>
<td>6,72</td>
</tr>
<tr>
<td>26,6</td>
<td>8,20</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

Tabela 2 – Aceleração (m/s\(^2\)) em função do tempo (s)

<table>
<thead>
<tr>
<th>(a) (m/s(^2))</th>
<th>(t) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0,043</td>
</tr>
<tr>
<td>25</td>
<td>0,054</td>
</tr>
<tr>
<td>32</td>
<td>0,069</td>
</tr>
<tr>
<td>81</td>
<td>0,145</td>
</tr>
<tr>
<td>106</td>
<td>0,230</td>
</tr>
<tr>
<td>110</td>
<td>0,239</td>
</tr>
<tr>
<td>120</td>
<td>0,260</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.
5 - Gráficos de funções não lineares e Linearização da curva

5.1. Função Potência:

Na física, um grande número de grandezas se relaciona por funções do tipo

$$y(x) = ax^n$$ \(8\)

Essas funções, se traçadas em papel milimetrado, não apresentam a reta como curva característica. Contudo, uma mudança conveniente de variáveis pode tornar linear a relação envolvendo y e x. Nesse caso a transformação pode ser efetuada usando-se o logaritmo em ambos os membros da equação, ou seja:

$$\log[y(x)] = \log(ax^n) =>$$

$$=> \log[y(x)] = \log a + n \log(x)$$ \(9\)

Denominando-se $\log[y(x)] = Y$, $\log a = B$, $n = A$ e $\log(x) = X$, tem-se:

$$Y(X) = AX + B$$ \(10\)

A aplicação do logaritmo em $y(x)$ permitiu sua linearização e, portanto, se for o gráfico for traçado em papel milimetrado fornecerá uma reta como mostra a Figura 3.

Se o gráfico de $y(x)$ em função de x for construído em um papel onde as duas escalas são logarítmicas, obtém-se a reta sem a necessidade de se calcular os logaritmos, o próprio papel se encarrega de realizar os cálculos, veja a Figura 4.
Figura 3 - Determinação das constantes a e n da função potência

Nota: Gráfico traçado em papel milimetrado.
Fonte: Elaborado pelo autor.

Figura 4 – Determinação das constantes a e n da função potência

Nota: Gráfico traçado em papel di-log.
Fonte: Elaborado pelo autor.
O coeficiente \(n \) da função potência pode ser obtido pela tangente do gráfico.

\[
 n = \frac{\Delta \log y}{\Delta \log x} = \frac{[\log(y_2) - \log(y_1)]}{[\log(x_2) - \log(x_1)]} \tag{11}
\]

e o coeficiente \(a \) é obtido diretamente do gráfico no ponto \(x = 1 \), pois para \(x = 1 \), \(y = a \) ou fazendo \(a = y(x) / x^n \), para quaisquer pontos \((x,y)\) tomados dos pontos pertencentes ao gráfico.

Exercício:

Construa em papel milimetrado e em papel di-log o gráfico de posição de um móvel \(x \) em função do tempo \(t \) e o gráfico da velocidade de uma partícula \(v \) em função de \(t \), conforme dados apresentados na Tabela 3 e 4. Obtenha os coeficientes característicos e escreva as expressões analíticas.
5.2. Função Exponencial

Finalmente, existe um terceiro tipo de função que aparecerá constantemente no decorrer do curso, que é a função exponencial.

\[y(x) = ae^{kx} \] \hspace{1cm} (12)

onde, a e k são constantes diferentes de 0. Como no caso anterior, se os gráficos destas funções forem traçadas em papel milimetrado, não se obtém uma reta como curva característica. Novamente torna-se necessária uma mudança de variáveis para tornar linear a relação entre y(x) e x.

Essa transformação é possível tomando-se o logaritmo de ambos os membros da equação. Deste modo:

\[\log[y(x)] = \log (ae^{kx}) \Rightarrow \]
\[\Rightarrow \log[y(x)] = \log(a) + kx \log(e), \]

Tabela 3 – Posição em função do tempo de um móvel

<table>
<thead>
<tr>
<th>x (cm)</th>
<th>t (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2.10^3</td>
<td>1,0</td>
</tr>
<tr>
<td>3,2.10^3</td>
<td>2,0</td>
</tr>
<tr>
<td>6,1.10^3</td>
<td>3,2</td>
</tr>
<tr>
<td>1,1.10^4</td>
<td>4,7</td>
</tr>
<tr>
<td>1,4.10^4</td>
<td>5,9</td>
</tr>
<tr>
<td>2,1.10^4</td>
<td>7,8</td>
</tr>
<tr>
<td>3,4.10^4</td>
<td>10,9</td>
</tr>
<tr>
<td>6,0.10^4</td>
<td>16,3</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

Tabela 4 – Velocidade em função do tempo de uma partícula

<table>
<thead>
<tr>
<th>v (cm/s)</th>
<th>t (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,7.10^{-2}</td>
<td>1,5</td>
</tr>
<tr>
<td>1,05.10^{-1}</td>
<td>4,0</td>
</tr>
<tr>
<td>1,14.10^{-1}</td>
<td>6,0</td>
</tr>
<tr>
<td>1,67.10^{-1}</td>
<td>40,0</td>
</tr>
<tr>
<td>2,08.10^{-1}</td>
<td>120,0</td>
</tr>
<tr>
<td>2,69.10^{-1}</td>
<td>430,0</td>
</tr>
<tr>
<td>2,97.10^{-1}</td>
<td>715,0</td>
</tr>
<tr>
<td>3,18.10^{-1}</td>
<td>990,0</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.
como log(e) = 0,4343 temos

\[\log[y(x)] = \log(a) + kx \cdot 0,4343 \quad (13) \]

chamando \(\log[y(x)] = Y(x) \) e \(\log(a) = B \) e \(0,4343k = A \) tem-se:

\[Y(x) = Ax + B \quad (14) \]

Nota-se então, que a reta é obtida ao traçar o gráfico \(\log(y) \) como função de \(x \) num papel milimetrado.

O coeficiente \(k \) é obtido do gráfico, pelo cálculo da tangente, a partir de dois pontos pertencentes à reta.

\[A = \frac{\log(y_2) - \log(y_1)}{x_2 - x_1} \quad (15) \]

O coeficiente \(a \) é obtido para \(x = 0 \), pois neste ponto \(y(0) = a \) na expressão \(y = ae^{kx} \).

\[y(x) = ae^{kx} \quad (16) \]

Figura 5 – Determinação das constantes \(B \) e \(k \) da função exponencial

Nota: Gráfico traçado em papel milimetrado.

Fonte: Elaborado pelo autor.
Para evitar o cálculo dos logaritmos de y, utiliza-se um papel apropriado onde uma das escalas é logarítmica, ou seja, o espaçamento é proporcional ao logaritmo do número apresentado.

Figura 6 – Determinação das constantes B e k da função exponencial

Nota: Gráfico traçado em papel mono-log.

Fonte: Elaborado pelo autor.

Exercícios:

Construa em papel milimetrado e em papel mono-log o gráfico de posição de um móvel x em função do tempo t e o gráfico da velocidade de uma partícula v em função de t, conforme dados apresentados nas Tabelas 5 e 6. Obtenha os coeficientes característicos e escreva as expressões analíticas.
6 – Barras de Erro

Quando as medidas experimentais são acompanhadas das respectivas barras de erro tem-se uma noção clara do quão preciso são os resultados. Em um gráfico de \(f(x) \) versus \(x \) os pontos são representados pelo par ordenado \([f(x), x]\) e as barras de erro verticais \(\Delta f(x) \) e horizontais \(\Delta x \) podem ser traçadas segundo as escalas obtidas para cada eixo.

Em alguns casos é possível que algumas barras de erro não possam ser representadas no papel milimetrado devido ao valor muito pequeno, no entanto elas existem e devem ser calculadas.

Tabela 5 – Posição em função do tempo de um móvel

<table>
<thead>
<tr>
<th>(x) (cm)</th>
<th>(t) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,00</td>
<td>0</td>
</tr>
<tr>
<td>3,90</td>
<td>1</td>
</tr>
<tr>
<td>1,60</td>
<td>2</td>
</tr>
<tr>
<td>0,63</td>
<td>3</td>
</tr>
<tr>
<td>0,25</td>
<td>4</td>
</tr>
<tr>
<td>0,10</td>
<td>5</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

Tabela 6 – Velocidade em função do tempo de uma partícula

<table>
<thead>
<tr>
<th>(v) (cm/s)</th>
<th>(t) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,0</td>
</tr>
<tr>
<td>21</td>
<td>2,0</td>
</tr>
<tr>
<td>52</td>
<td>4,5</td>
</tr>
<tr>
<td>80</td>
<td>5,7</td>
</tr>
<tr>
<td>156</td>
<td>7,5</td>
</tr>
<tr>
<td>350</td>
<td>9,8</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.
Figura 7 – Posição de um móvel em função do tempo com as barras de erro

Fonte: Elaborado pelo autor.

7 – Equações

Devem ser isoladas do texto, com numeração (em algarismos arábicos colocados entre parênteses) colocada do lado direito da página. Após a equação, deve haver uma frase explicando a simbologia adotada. Tal frase não será necessária se a simbologia já foi explicada anteriormente. Exemplo: A velocidade $V(t)$ de um móvel em função do tempo t é dada pela equação 17:

$$V(t) = V_o + at$$ \hspace{1cm} (17)

sendo "a" a aceleração do móvel e V_o velocidade do móvel no instante $t = 0$ s.
2º EXPERIMENTO: GRÁFICOS E FUNÇÕES
MOVIMENTO EM MEIO VISCOSO

1. Objetivo: Estudo do comportamento do movimento de uma esfera metálica num meio viscoso

2. Parte Experimental

Você irá determinar experimentalmente o tipo de movimento descrito por uma esfera de aço que se desloca no interior de um tubo de vidro contendo um líquido viscoso.

2.1. Procedimento:

a). Marque, no tubo de vidro, os pontos P₀, P₁, P₃ ..., Pₙ distante entre si 100 mm. Observe para que não haja bolhas de ar no intervalo onde a esfera de aço irá percorrer.

b). Apoie um extremo do tubo no bloco de madeira de modo a incliná-lo de um ângulo menor que 10º, conforme a Figura 1. Marque as posições do bloco e do tubo na mesa para reproduzir sempre a mesma inclinação.

c). Você irá utilizar o cronômetro para medir os intervalos de tempo que a esfera leva para percorrer os espaços, P₀P₁, P₀P₂ ..., P₀Pₙ. Para isso, utilize o imã para posicionar a esfera no extremo mais alto do tubo (lado de P₀); verifique a posição do tubo (isto é, o ângulo de inclinação utilizando as marcas feitas na mesa) e ligue o cronômetro quando a esfera passar por P₀ e desligue-o quando passar por P₁: Meça o tempo transcorrido para os demais intervalos (P₀P₂, P₀P₃, ..., P₀Pₙ).
Figura 1 – Esquema do tubo de vidro com um líquido viscoso com uma esfera de aço

![Figura 1](image)

Fonte: Elaborado pelo autor.

d). Repita este procedimento 8 vezes para cada deslocamento e com os dados obtidos preencha a Tabela 1. Considere os desvios como sendo o maior entre o *desvio médio absoluto* e a *incerteza do cronômetro*.

Tabela 1 - Medidas dos intervalos de tempo \(t \) percorridos pela esfera

<table>
<thead>
<tr>
<th>((d \pm \Delta d) \text{ mm})</th>
<th>(t_1)</th>
<th>(t_2)</th>
<th>(t_3)</th>
<th>(t_4)</th>
<th>(t_5)</th>
<th>(t_6)</th>
<th>(t_7)</th>
<th>(t_8)</th>
<th>(\bar{t} \pm \Delta \bar{t}) (\text{(s)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,0 ± 0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200,0 ± 0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300,0 ± 0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400,0 ± 0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500,0 ± 0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600,0 ± 0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.
e). Construa, em papel milimetrado, um gráfico da posição \(d \pm \Delta d \) em função do tempo \((t \pm \Delta t) \), a partir dos dados da Tabela 1, apresentando as barras de erro \(\Delta t \) do tempo médio para cada posição da esfera. Obs: Veja sobre barras de erro na página 58

f). Calcule a velocidade da esfera \(\bar{v} \pm \Delta v \) por meio do coeficiente angular da reta média obtida do gráfico.

g). Escreva a equação da reta que descreve o movimento da esfera.

2.2. Questões

a). Por que a velocidade da esfera metálica é constante ao longo de sua trajetória?

b). O experimento funcionaria se o tubo de vidro fosse colocado na vertical? Explique.
3º EXPERIMENTO: GRÁFICOS E FUNÇÕES
SIFONAÇÃO DE LÍQUIDOS

1. Objetivo

Verificar experimentalmente o comportamento do escoamento de líquidos por meio de um sifão e encontrar as funções que regem o seu comportamento na sifonação em nível e em desnível.

2. Introdução

Um fluido, em contraste com um sólido, é uma substância que pode escoar. Fluidos se ajustam aos limites de qualquer reservatório em que os coloquemos. Eles se comportam desta forma porque um fluido não consegue suportar uma força que seja tangencial à sua superfície.

Você já deve ter visto alguém esvaziando, ou já esvaziou um depósito de água ou um tanque de gasolina por meio de uma mangueira ou sifão. O funcionamento de um sifão baseia-se na diferença de pressão entre os dois ramos da mangueira. Para entender o princípio de funcionamento de um sifão, analise primeiramente Figura 1 e 2.

A Figura 1 mostra o sifão sendo utilizado para escoar a água da proveta 1 para a proveta 2 por meio de um sifão formado por um pedaço de mangueira e dois tubos de vidro. O escoamento ocorre até que a pressão no final do tubo de vidro, inserido na proveta 2, se iguale com a pressão do líquido contido na proveta 1, conforme mostra a Figura 2.
Para que ocorra o processo de sifonação é necessário que os tubos estejam totalmente preenchidos com água. Neste processo, não importa o formato da borracha látex ou o desnível das pontas dos tubos de vidro, desde que a ponta do tubo inserido na proveta 2 esteja abaixo do nível de água da proveta 1.

3. Parte experimental

3.1. Gráfico Monologarítmico: (Sifonação em nível)

Neste experimento você irá procurar o tipo de dependência funcional que existe entre o volume e o tempo de transferência do líquido transferido num processo de sifonação em nível.

3.1.1. Procedimento:

A Figura 3 apresenta a montagem utilizada para a realização do experimento de sifonação em nível. Acompanhe, a seguir, o procedimento experimental.
a). Encher com água uma das provetas até a marca de 500 ml deixando a outra vazia. Preencha completamente os tubos de vidro com água mantendo apertado firmemente, com os dedos, a parte central flexível do tubo para que a água não vaze.

b). Coloque cada extremo do tubo em cada uma das provetas, mantendo o tubo cheio de água e sempre na mesma posição (tocando o fundo).

c). Simultaneamente solte a parte flexível do tubo e ligue o cronômetro para medir o tempo de escoamento da água (considere intervalos de 25 ml para cada tomada de tempo). Anote os tempos necessários para transferir a água para a segunda proveta até que se nivelem.

d). Preencha a Tabela 1 indicando a quantidade de água contida na Proveta 1 e o tempo necessário para o escoamento, repetindo 05 vezes cada medida.

e). Construa um gráfico linear do volume de água contido na proveta 1 em função do tempo.

f). Que tipo de função entre as variáveis sugere o gráfico obtido? Você tem alguma sugestão para descobrir a expressão que relacione as grandezas t e o volume V (ou massa) de água?
g). Construa, em papel mono-logaritmo, um gráfico de V x t.

Determine as constantes do sistema e obtenha a equação que rega o escoamento em função do tempo.

Perguntas:

(1). Que resultado você esperaria se a seção da proveta não fosse uniforme? E se as provetas fossem de diâmetros muito diferentes?

(2). Sabemos que ao final do processo apenas metade do volume inicial é transferido, ou seja, (250 ml). Usando a equação obtida calcule o tempo necessário para transferir 1/4 do volume inicial. Compare com o valor obtido do gráfico.

Tabela 1 - Sifonação em Nível

<table>
<thead>
<tr>
<th>Volume (ml)</th>
<th>475</th>
<th>450</th>
<th>425</th>
<th>400</th>
<th>375</th>
<th>350</th>
<th>325</th>
<th>300</th>
<th>275</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (s)</td>
<td></td>
</tr>
<tr>
<td>T2 (s)</td>
<td></td>
</tr>
<tr>
<td>T3 (s)</td>
<td></td>
</tr>
<tr>
<td>T4 (s)</td>
<td></td>
</tr>
<tr>
<td>T5 (s)</td>
<td></td>
</tr>
</tbody>
</table>

Nota: Volume de água restante na proveta em função do tempo.
Fonte: Elaborado pelo autor.
3.2. Gráficos Dilogarítmicos: (Sifonação em desnível).

Esta atividade é uma variação do experimento anterior. O objetivo é determinar a dependência do volume de água escoada para a proveta 2 com o tempo, sob pressão atmosférica.

Figura 4 – Sifonação em desnível

Fonte: Elaborado pelo autor.

3.2.1. Procedimento:

a). Encha a proveta de água até o volume de 500 ml e em seguida preencha o tubo de água e mergulhe um de seus extremos na proveta 1 (tocar o fundo), mantendo a parte flexível apertada e com o outro extremo na proveta 2 , conforme mostra a Figura 4. *Observe que o tubo de transferência não deve ficar imerso no*
líquido transferido.

b). Ao mesmo tempo, ligue o cronômetro e solte a parte flexível permitindo que a água escoe para a proveta 2. Meça o tempo necessário para o escoamento a cada 25 ml até o esgotamento da proveta (1). Organize seus dados conforme a Tabela 2 e a Tabela 3.

c). Construa, em papel milimetrado, um gráfico do volume em função de tempo de escoamento.

d). Que tipo de gráfico é este? Este lhe sugere alguma tentativa para obter a relação entre V e t.

e). Construa, em papel dilogarítmico, um gráfico de V em função de t. Determine, a partir do gráfico obtido, as constantes e obtenha a expressão que rega o escoamento em função do tempo.

Perguntas:

(1). Fisicamente, em que difere este sistema do sistema da atividade anterior?

(2). A partir da expressão obtida para o escoamento, determine o tempo necessário para escoar 1/4 da água. Compare este resultado ao obtido diretamente do gráfico.

(3). Se o volume da primeira proveta fosse ainda o mesmo 500 ml anterior sendo, porém, colocados com desnível maior, qual seria alteração que você esperaria no gráfico log V x log t?
Tabela 2 - Sifonação em Desnível

<table>
<thead>
<tr>
<th>Volume (ml)</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>175</th>
<th>200</th>
<th>225</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (s)</td>
<td></td>
</tr>
<tr>
<td>T2 (s)</td>
<td></td>
</tr>
<tr>
<td>T3 (s)</td>
<td></td>
</tr>
<tr>
<td>T4 (s)</td>
<td></td>
</tr>
<tr>
<td>T5 (s)</td>
<td></td>
</tr>
</tbody>
</table>

Nota: Volume de água escoada da proveta1 em função do tempo.
Fonte: Elaborado pelo autor.

Tabela 3 - Sifonação em Desnível (Continuação)

<table>
<thead>
<tr>
<th>Volume (ml)</th>
<th>275</th>
<th>300</th>
<th>325</th>
<th>350</th>
<th>375</th>
<th>400</th>
<th>425</th>
<th>450</th>
<th>475</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (s)</td>
<td></td>
</tr>
<tr>
<td>T2 (s)</td>
<td></td>
</tr>
<tr>
<td>T3 (s)</td>
<td></td>
</tr>
<tr>
<td>T4 (s)</td>
<td></td>
</tr>
<tr>
<td>T5 (s)</td>
<td></td>
</tr>
</tbody>
</table>

Nota: Volume de água escoada da proveta1 em função do tempo.
Fonte: Elaborado pelo autor.
1. **Objetivo**: Estudo da flexão de uma barra, de seção uniforme e homogênea, como função da carga P e do comprimento L.

2. **Introdução**

 Considere-se o caso de uma barra engastada, em cuja extremidade se aplica uma força P. Pode-se mostrar que, sendo a barra homogênea e de seção uniforme, a flexão Y será diretamente proporcional à carga P e diretamente proporcional ao cubo do comprimento L:

 $$ Y(P) \propto P $$ \hspace{1cm} (1)

 $$ Y(P) \propto L^3 $$ \hspace{1cm} (2)

 Assim, a flexão de uma barra metálica será proporcional ao produto $P.L^3$

 $$ Y(P,L) = K.P.L^3 $$ \hspace{1cm} (3)

 onde K é uma constante de proporcionalidade.

 Portanto, se for mantido fixo o comprimento L, a flexão Y variará de modo proporcional carga P. O gráfico cartesiano de Y em função de P será para cada valor do comprimento L uma reta que passa pela origem. Por outro lado, mantendo P constante, a flexão Y variará proporcionalmente ao cubo do comprimento L.

73
Figura 1 – Montagem para a realização do experimento de flexão

![Diagrama de flexão](image)

Fonte: Elaborado pelo autor.

3. Procedimento

a) A barra fornecida deve ser dividida por 5 ou mais traços. Cada um desses traços corresponderá a um comprimento L que será utilizado para se efetuar uma série de medidas com diferentes cargas.

b) A seguir, monte o sistema mostrado na Figura 1. Anote o comprimento útil, L, e leia a posição da extremidade livre na escala da régua, *quando não há força aplicada à barra*.

c) Primeiro ciclo de medidas: Prender na extremidade livre uma massa fornecida, anotando a posição da extremidade livre na escala da régua. Realizar outras 4 medidas utilizando massas diferentes.

d) Segundo ciclo de medidas: Variar o comprimento útil, L, pelo menos 5 vezes e repetir as operações, com as mesmas massas usadas anteriormente.

e) A flexão Y será obtida em cada série pela diferença: leitura superior menos leitura inferior.
4. Tratamento dos Dados

a) Fazer gráfico de \((Y \times P)\) para cada comprimento \(L\) (Tabela 1) e montar uma tabela das constantes de proporcionalidade entre \(Y\) e \(P\) encontradas nos gráficos \((Y \times P)\).

b) Fazer um gráfico no papel milimetrado de \((Y \times L)\) para cada força \(P\) aplicada usando os dados da Tabela 1 e identificar a curva obtida. Obtenha a equação e seus coeficientes característicos para cada comprimento \(L\).

c) Escolha um papel gráfico adequado e obtenha os coeficientes característicos da função \(Y(L)\) para cada \(P\) aplicado.

d) Finalmente, expresse de forma adequada a função que rege o comportamento da flexão de uma barra metálica.

Tabela 1- Medidas da flexão da barra

<table>
<thead>
<tr>
<th>Flexão ((Y_i)) (mm)</th>
<th>(P_1) =</th>
<th>(P_2) =</th>
<th>(P_3) =</th>
<th>(P_4) =</th>
<th>(P_5) =</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legenda: \((Y_i)\): flexão; \((P_i)\): peso; \((L_i)\): comprimento da barra.
Fonte: Elaborado pelo autor.

No relatório: a) Apresentar a montagem do experimento utilizado no estudo da flexão de uma barra metálica. b) Descrever como foram realizadas as duas etapas das medidas. c) Apresentar os dados da tabela acima com seus respectivos desvios. d) Apresentar os três papéis gráficos solicitados. e) Para determinar o expoente de \(L\) deve-se calcular a média dos valores obtidos para cada série de medidas.
5º EXPERIMENTO: MOVIMENTO RETILÍNEO UNIFORMEMENTE ACCELERADO

1. Objetivo

Estudo do movimento retilíneo uniformemente acelerado de um corpo em condições especiais - sobre um "colchão de ar" – aplicação: A Segunda Lei de Newton.

2. Introdução Teórica

De acordo com a Segunda Lei de Newton, um corpo de massa \(m \) que se move sob ação de uma força \(\vec{F} \) é submetido a uma aceleração \(\vec{a} \) tal que:

\[
\vec{F} = \frac{d\vec{p}}{dt} = m\vec{a}
\]

onde \(\vec{p} \) é o momento linear e \(\vec{a} \) a aceleração do corpo.

A aceleração poderá ser determinada, se conhecido o módulo \(F \) e a massa do corpo. No caso particular em que a resultante das forças for nula (\(\vec{F} = \vec{0} \)), tem-se que \(\vec{a} = \vec{0} \) e, neste caso, o movimento será uniforme e equivalente ao movimento de um corpo sem ação de forças externas, o que é descrito pela 1ª Lei de Newton (Lei da Inércia).

A determinação da aceleração de um corpo pode ser feita cinematicamente, isto é, pela análise das posições ocupadas pelo móvel no decorrer do tempo, ou então a aceleração pode ser determinada dinamicamente, isto é, pela aplicação da 2ª Lei de Newton.
3. Parte Experimental

Os movimentos que você vai estudar são os de um corpo num plano horizontal com atrito desprezível. Para tanto, vamos utilizar um equipamento denominado "Trilho de Ar".

Os corpos que se movimentam são carrinhos apoiados em um tubo de secção retangular, mas separados por uma camada de ar da ordem de 0,1 mm. Desta forma o carrinho pode deslocar-se ao longo do trilho, praticamente sem atrito, apoiado numa camada de ar comumente chamada de "colchão de ar". A camada de ar é produzida por um compressor que alimenta o tubo e o ar comprimido sai por pequenos furos distribuídos na superfície do trilho (vide Figura 1).

Figura 1 – Experimento: Movimento Retilíneo Uniformemente Variado.

3.1 - Análise Cinemática do Movimento.
Se o movimento apresentar aceleração constante, sabemos da cinemática, que a equação horária da posição é dada por uma equação de 2º grau no tempo:

\[x(t) = x_0 + Bt + Ct^2 \]

(2)

onde: B e C são constantes do movimento.

\[v(t) = \frac{dx}{dt} = B + 2Ct \]

(3)

Derivando a equação horária obtém-se a velocidade e, a aceleração é obtida derivando-se a velocidade:

\[a(t) = \frac{dv}{dt} = 2C = \text{Constante} \]

(4)

3.2 - Procedimento Experimental.

O procedimento seguinte permitirá a obtenção dos dados experimentais:

(a) Observe a montagem esquematizada na Figura 1 e reproduza-a para a realização da experiência.

(b) Observe se o trilho está bem nivelado.

(c) Meça a massa do carrinho e a massa do corpo suspenso na extremidade do fio.

(d) Anote a posição do carrinho quando o corpo suspenso estiver na iminência de tocar o chão.

(e) A partir desta posição afaste o carrinho até a extremidade do trilho de ar.

(f) Colocar o cronômetro da Pasco (Figura 2) no modo “Pulse”.

(g) A partir da posição do primeiro detector até a posição anotada no item (d) faça marcas no trilho de ar a cada 5,0 cm.

(h) Para cada posição ajuste o segundo detector para a medição do intervalo de
tempo.

(i) Segure o carrinho na extremidade do trilho.
(j) Ligue o medidor de tempo e o compressor.
(k) Libere e carrinho e anote o espaço percorrido e o intervalo de tempo correspondente em uma tabela.
(l) Repita o experimento para outras duas massas do corpo suspenso.

Tabela 1 – Distância percorrida em função do tempo

<table>
<thead>
<tr>
<th>x(t) (cm)</th>
<th>5,0</th>
<th>10,0</th>
<th>15,0</th>
<th>20,0</th>
<th>25,0</th>
<th>30,0</th>
<th>35,0</th>
<th>40,0</th>
<th>45,0</th>
<th>50,0</th>
<th>55,0</th>
<th>60,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>t (s)</td>
<td></td>
</tr>
</tbody>
</table>

Nota: massa do corpo suspenso $m_1 = \ldots \ldots \ldots$

Fonte: Elaborado pelo autor.

Tabela 2 – Distância percorrida em função do tempo

<table>
<thead>
<tr>
<th>x(t) (cm)</th>
<th>5,0</th>
<th>10,0</th>
<th>15,0</th>
<th>20,0</th>
<th>25,0</th>
<th>30,0</th>
<th>35,0</th>
<th>40,0</th>
<th>45,0</th>
<th>50,0</th>
<th>55,0</th>
<th>60,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>t (s)</td>
<td></td>
</tr>
</tbody>
</table>

Nota: massa do corpo suspenso $m_1 = \ldots \ldots \ldots$

Fonte: Elaborado pelo autor.
Tabela 3 – Distância em função do tempo (massa do corpo suspenso $m_3 =$).

<table>
<thead>
<tr>
<th>x(t) (cm)</th>
<th>5,0</th>
<th>10,0</th>
<th>15,0</th>
<th>20,0</th>
<th>25,0</th>
<th>30,0</th>
<th>35,0</th>
<th>40,0</th>
<th>45,0</th>
<th>50,0</th>
<th>55,0</th>
<th>60,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>t (s)</td>
<td></td>
</tr>
</tbody>
</table>

Nota: massa do corpo suspenso $m_1 =$
Fonte: Elaborado pelo autor.

3.3 – Análise dos dados experimentais.

Para os três experimentos você deve seguir os seguintes passos:
(a) Faça o gráfico $x(t) \times t$ em um papel milimetrado.
(b) Faça o gráfico $x(t) \times t$ em um papel dilogarítmico.
(c) Encontre a função que rege o comportamento da posição do carrinho com o tempo.
(d) Determine graficamente a aceleração.

Figura 2 – Cronômetro da Pasco Scientific

Nota: Photogate Timer Sistem.
Fonte: Elaborado pelo autor.
(e) Determine a velocidade média \(\bar{v}_n \) entre as posições anterior e posterior da
n-ézima medida:

\[
\bar{v}_n = \frac{x_{n+1} - x_{n-1}}{t_{n+1} - t_{n-1}},
\]

(5)

e a expressão do tempo médio entre os instantes anterior e posterior da n-
ézima medida:

\[
\bar{t}_n = \frac{t_{n+1} + t_{n-1}}{2}
\]

(4)

(f) Faça um gráfico de \(\bar{v}_n \times \bar{t}_n \) em um papel milimetrado e determine a
aceleração e a velocidade inicial

3.4 - Análise dos dados obtidos.

Segundo os objetivos do experimento devemos comparar a aceleração do
movimento previsto pela Lei de Newton com aquela determinada pela análise das
posições.

Portanto, primeiramente, determine teoricamente a aceleração do carrinho,
despretando-se eventuais atritos e depois, pela análise das posições e tempos,
determine experimentalmente a aceleração.

4. Referências Bibliográficas

[1]. Texto Extraído de "Laboratório de Física I" - IFUSP,1980, Prof. Fuad Daher
Saad..

[2]. Timoner, A.; Majorana, F.S. e Leiderman, G.B. - Práticas de Física.V.3 -
Editora Edgard Blucher Ltda, São Paulo1.976.
6º EXPERIMENTO: QUEDA LIVRE

1. Objetivos

- Estudo do movimento de um corpo em queda livre.
- Determinação do valor da aceleração da gravidade local, por meio da análise da queda livre de um corpo.

2. Introdução Teórica

Nesta experiência, você aplicará conceitos de deslocamento, velocidade e aceleração. É importante, portanto, recordar os conceitos sobre velocidade média, velocidade instantânea, aceleração instantânea e características do movimento uniformemente variado.

O movimento que você vai estudar é o que denominamos de Queda Livre e a rigor só é verificado no vácuo. No entanto, quando pudermos desprezar os efeitos da resistência do ar, dependendo do corpo que cai, temos como boa aproximação, a queda livre. Se ainda pudermos desprezar a variação da aceleração da gravidade com a altura e o movimento de rotação da Terra, teremos um movimento uniformemente acelerado.

Gravimetria

Há equações que permite determinar a aceleração gravitacional se conhecemos a altitude \(h \) e a latitude \(\theta \) do local. Timoner et al.[1] apresentam a seguinte equação:

\[
g = 978,04 + 5,17 \cdot \text{sen}^2 \theta - 9,2 \cdot 10^{-6} \cdot h
\]

onde \(g \) é fornecido em \(\text{cm.s}^2 \), \(\theta \) é medido em graus e \(h \) em centímetros (cm). Outra
equação é apresentada por Hinrichsen [2]:

\[g = 9,83209 - 0,05179 \cdot \cos^2 \theta - 3,086 \cdot 10^{-6} \cdot h \] \hspace{1cm} (2)

onde \(g \) é calculado em \(\text{m.s}^{-2} \), \(\theta \) em graus e \(h \) em metros (m). O Quadro 1 apresenta a latitude e a altitude da cidade de São Paulo e de Ilha Solteira.

Quadro 1 – Latitude e altitude da cidade de São Paulo e de Ilha Solteira

<table>
<thead>
<tr>
<th>São Paulo</th>
<th>Latitude: 23°34’ Sul</th>
<th>Altitude: 860 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilha Solteira</td>
<td>Latitude: 20°25’ Sul</td>
<td>Altitude: 330 m</td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

3. Parte Experimental

A determinação da aceleração da gravidade pode ser determinada a partir da análise do movimento de um corpo em queda livre. Neste experimento desprezaremos a força de atrito do ar, o movimento de rotação da Terra e a variação da aceleração da gravidade com a altura.

3.1 - Aparato Experimental:

A figura abaixo mostra o aparato experimental para a determinação da aceleração da gravidade local. Uma esfera de aço passa por dois sensores que estão conectados a um cronômetro que registra o intervalo de tempo.
Figura 1 – Aparato experimental: Queda livre.

Fonte: Elaborado pelo autor.

3.2 - Procedimento Experimental

a) Nivele o aparelho utilizando o fio de prumo ajustando os parafusos na base da coluna suporte. O fio deve coincidir com o feixe de luz infravermelho do sensor.

b) Meça a massa da esfera.

c) Coloque o sensor superior logo abaixo da esfera suspensa pelo eletroímã.

d) Ligue o cronômetro Pierron (botão traseiro) em 220 V.

e) Para cada medida zere o cronômetro apertando o botão RAZ.

f) Ligue a bobina para fixar a esfera.

g) Para soltar a esfera basta desligar a bobina.

h) Faça duas séries de medidas do tempo de queda da esfera para várias posições do sensor inferior (sugestão: 10,0 em 10,0 cm) usando o cronômetro da Pierron. Organize os dados em uma tabela.
4. Tratamento dos Dados

4.1 - Primeira Parte

a). Faça, em papel milimetrado, o gráfico do espaço percorrido pelo corpo em função do tempo, utilizando os valores médios obtidos das duas séries de medidas.

b). Faça um gráfico da velocidade \(\bar{v}_n \) em função do tempo \(\bar{t}_n \) utilizando a expressão da velocidade média entre as posições anterior e posterior da n-ézima medida:

\[
\bar{v}_n = \frac{x_{n+1} - x_{n-1}}{t_{n+1} - t_{n-1}},
\]

(3)
e a expressão do tempo médio entre os instantes anterior e posterior da n-ézima medida:

\[
\bar{t}_n = \frac{t_{n+1} + t_{n-1}}{2},
\]

(4)

c). A partir do gráfico obtido em (b), determine a aceleração da gravidade média da cidade de Ilha Solteira.

d). Compare o seu resultado com o valor obtido pela Equação (2).

4.2 - Segunda Parte

a). Construa em papel dilogarítmico um gráfico de \(Y(t) \) em função de \(t \) para os dados obtidos no item (h) do procedimento experimental.

b). Determine a equação que rege o movimento de queda livre.

c). Analise o gráfico e determine a expressão que rege o movimento sabendo-se que ela tem a forma:

\[
Y(t) = Y(0) + V(0).t + \frac{a.t^n}{2}
\]

(4)

onde \(Y(t) \) é a posição da esfera no instante \(t \), \(Y(0) \approx 0 \) é a posição da esfera no instante inicial, \(V(0) \approx 0 \) é a velocidade inicial da esfera, \(a \) é a aceleração da esfera.
e \(n \) é um expoente.

d). Compare \(a \) com \(g \) e \(n \) com 2. Comente as diferenças.

e). Calcule a energia potencial e a energia cinética máxima. (Tome como referência o sensor inferior no ponto mais baixo utilizado no experimento). Compare os valores dessas energias.

5. Questões

a). Qual o valor da aceleração da gravidade e sua respectiva incerteza \((g \pm \Delta g)\) obtida a partir do gráfico da velocidade em função do tempo? Qual o desvio relativo entre seu resultado e o valor médio da aceleração em Ilha Solteira? Obs: Calcular \(g \) por propagação de erros.

b). Determine o intervalo de tempo entre o início do movimento e a passagem da esfera pelo primeiro sensor.

c). Escolha um instante de tempo \(t \) e calcule a velocidade do corpo a partir dos gráficos \(y = y(t) \) e \(v = v(t) \). Qual é a discrepância percentual entre esses valores?

6. Referências Bibliográficas

7º EXPERIMENTO: DETERMINAÇÃO DO COEFICIENTE DE ATRITO

1. Objetivo

Determinar experimentalmente o coeficiente do atrito cinético μ_c entre duas superfícies.

2. Introdução

As forças de atrito desempenham um papel de grande importância em todos os processos que ocorrem na natureza e têm a sua origem nas áreas de contato entre dois corpos. Desta forma, um bloco lançado em um piso horizontal entra logo em repouso devido às forças de atrito. Para manter o bloco em movimento uniforme temos que empregar uma força que deve ser igual em intensidade à força de atrito que se opõe ao movimento.

A força de atrito é uma força de origem eletromagnética devido à interação entre nuvens eletrônicas dos átomos localizados nas regiões de contato entre as superfícies dos corpos.

As superfícies lisas e até as altamente polidas são extremamente rugosas na escala microscópica, conforme apresentado na Figura 1. Quando um objeto é colocado sobre uma superfície, apenas os pontos altos entre as superfícies se tocam. Nesses pontos de contato formam microssoldas que dão origem a uma pequena força contrária ao movimento do objeto sobre a superfície. A força resultante que se opõe ao movimento é chamada de força de atrito.
Figura 1 – Superfícies em contato. Destaque das irregularidades das superfícies na escala microscópica.

Fonte: Elaborado pelo autor.

Se a força aplicada no bloco, conforme mostrada a Figura 2, não for suficiente para colocá-lo em movimento, a força de atrito que se opõe à força aplicada é chamada força de atrito estático.

Figura 2 – Força horizontal aplicada em um bloco colocado sobre a superfície de uma mesa.

Fonte: Elaborado pelo autor.

O módulo desta força varia entre zero e o valor máximo, chamado de força de atrito estático máxima \(f_{e\ max}\) que é proporcional à força normal \(N\) exercida sobre o bloco pela superfície. A constante de proporcionalidade é o "coeficiente de atrito estático" \(\mu_e\). Assim, podemos escrever:

\[
f_{e\ max} = \mu_eN
\]
Se a força aplicada for suficiente para colocar o bloco em movimento, a força que se opõe ao movimento é chamada de força de atrito cinético (f_c) que independente da área de contato e é proporcional à força normal N. Esta proporcionalidade é expressa através do chamado "coeficiente de atrito cinético" (μ_c):

$$f_c = \mu_c N \quad (2)$$

O comportamento da força de atrito em função de uma força externa aplicada ao bloco é apresentado na Figura 3.

Figura 3 – Comportamento da força de atrito em função da força aplicada.

![Diagrama da força de atrito em função da força aplicada](image)

Fonte: Elaborado pelo autor.

3. Procedimento Teórico

Neste experimento será determinado o coeficiente de atrito cinético entre duas superfícies. Será utilizado o trilho de ar, sem o funcionamento do compressor, como uma das superfícies de contato e um carrinho de plástico de massa M_1, como a outra superfície. O carrinho é colocado sobre o trilho e conectado, por meio de um fio que passa por uma roldana, a um corpo suspenso de massa M_2, conforme apresentado na Figura 4.
Elabore o modelo físico e matemático para a experiência e obtenha uma relação matemática entre M_1, M_2, h, d e μ_c. Na Figura 4, temos um esquema do experimento que será utilizado. Você deverá analisar, criticamente, as condições impostas ao problema e obter as previsões do modelo.

- Faça o diagrama de corpo livre para as duas massas em cada fase (fase 1 - antes do corpo M_2 tocar o solo; fase 2 - depois que M_2 tocar o solo).

- Escreva as equações de Newton para cada massa em cada fase. A cinemática fornece uma relação entre as acelerações e os deslocamentos em cada fase. Lembre-se de que a velocidade inicial da primeira fase é zero; a velocidade inicial da segunda fase é a mesma que a velocidade final da primeira fase; e, ainda, a velocidade final da segunda fase é zero.

- Escreva as equações necessárias para calcular as acelerações.
Sugestão para elaboração do modelo teórico:

Elimine a força de tração do fio T das duas equações de Newton da primeira fase, e em seguida, obtenha a relação entre as acelerações. A seguir, elimine a velocidade das duas equações cinemáticas.

A equação que você deverá obter é:

\[
\frac{d}{h} = \frac{(M_2/M_1) - \mu_c}{\mu(1 + M_2/M_1)}
\]

(3)

Se você realizar um conjunto de medidas, variando o valor da massa \(M_1 \), será obtido um conjunto de dados, dos quais será possível tirar um bom valor do coeficiente de atrito.

Para esta finalidade, a previsão do modelo fica mais simples se chamarmos:

\[k = \frac{d}{h} \] e \[\alpha = \frac{M_2}{M_1} \]. Então a equação (3) fica:

\[
K = \frac{\alpha - \mu}{\mu_c(1 + \alpha)}
\]

(4)

Veja que os valores de \(\alpha \) e de \(k \) são conhecidos a partir dos dados experimentais. A equação (4) é aparentemente complicada, no entanto, é possível representar os dados em um gráfico linear se, a partir de (4), escrevermos:

\[
\alpha = \mu_c[1 + K(1 + \alpha)]
\]

(5)

4. Procedimento Experimental

Planeje a experiência, as tabelas de dados a serem obtidas e especialmente o método que deverá usar para tirar as medidas. Pense como você fará para medir os percursos \(h \) e \(d \). Possivelmente o fio que você usará não é totalmente inextensível. Como você levará isso em conta?

a). Utilize 5 razões \(m_2 / m_1 \). Sugestão: razão entre 0,5 e 1,5

b). Para cada razão de massas, repita 5 vezes o experimento.
Tabela 1 – Posição d em função da razão das massas M_2/M_1

<table>
<thead>
<tr>
<th>$M_2/M_1 \rightarrow$</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1 (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_2 (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_3 (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_4 (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_5 (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: Elaborado pelo autor.

5. Análise dos dados

O coeficiente de atrito cinético μ_c pode ser determinado pela Equação (5), pelo valor da tangente da reta obtida do gráfico de α versus $[1 + K(1 + \alpha)]$. Em superfícies que envolvem a combinação plástico-metal, o coeficiente de atrito cinético μ_c apresenta valores entre 0,1 e 0,4 [5]. (a) Faça uma análise do resultado obtido para μ_c, (b) Quais foram as dificuldades encontradas pelo seu grupo na obtenção dos dados experimentais? (c) O que pode ser alterado no aparato experimental, utilizado neste experimento, para obter melhores resultados?
6. Referências Bibliográficas

8º EXPERIMENTO: MOVIMENTO DE UM PROJÉTIL

1. Objetivo

Realizar uma análise teórica e experimental do movimento bidimensional: Movimento de um projétil.

2. Introdução

Chamamos de movimento de um projétil, ao movimento de um a partícula que se desloca em duas dimensões. Neste movimento consideramos sempre que a atmosfera não tenha qualquer efeito sobre o movimento do projétil. Este movimento, realizado próximo à superfície da Terra, tem como característica apresentar um movimento retilíneo uniformemente variado (aceleração constante = -g) na direção do eixo y e um movimento retilíneo uniforme (aceleração = 0, velocidade constante) na direção do eixo x.

Teoricamente, a trajetória de um projétil é parabólica, ocorre num plano e pode ser descrita como uma função polinomial do tipo,

\[Y = Y(X) = AX^2 + BX \] \hspace{1cm} (1)

onde B depende do ângulo de lançamento e A está relacionado com a velocidade, ângulo de lançamento e aceleração da gravidade. No entanto, é possível descrever a trajetória em termos de dois tipos de movimento:

a). No eixo x: MRU

\[X = X_0 + V_{0x}t, \] \hspace{1cm} (2)

sendo \(V_{0x} = V_0 \cos \theta_0 \).
b). No eixo y: MRUV

\[Y = Y_0 + V_{0y}t + \frac{1}{2}at^2 \]

sendo \(V_{0y} = V_0 \cdot \text{sen } \theta_0 \), onde \(a = -g \).

3. Esquema da Montagem Experimental

Para determinar experimentalmente a trajetória de um projétil, vamos utilizar a montagem esquematizada na Figura 1. Um projétil pode ser disparado a partir de um canhão com um determinado ângulo de lançamento para diferentes velocidades iniciais, em direção a um anteparo móvel. Uma folha de papel com carbono deve ser fixada neste anteparo para se registrar a posição do choque da bala com o anteparo. A Figura 2 apresenta uma foto que ilustra a montagem experimental.

Figura 1 – Lançamento de projéteis

Nota: Esquema da montagem experimental para a realização do estudo do movimento em duas dimensões.
Fonte: Elaborado pelo autor.
Figura 2 – Foto da montagem experimental: Lançamento de projéteis

Nota: Foto da montagem experimental para a realização do experimento.
Fonte: Elaborado pelo autor.

4. Procedimento Experimental

A partir do esquema experimental da Figura 1 realize os seguintes procedimentos:

(a) Fixe o canhão na extremidade da mesa.
(b) Fixe e determine um ângulo de lançamento.
(c) Inicie os disparos com o anteparo próximo ao canhão.
(d) A cada disparo, anote a distância x e afaste o anteparo de distâncias constantes ($\Delta x \sim 10,0 \text{ cm}$). Mova-o também na direção z, com um deslocamento $\Delta z \sim 5,0 \text{ cm}$, com objetivo de se conseguir uma representação parabólica da trajetória.
(e) Realize 5 disparos para cada posição do anteparo.

(f) Realize os disparos até que a altura máxima ($y_{máx}$) seja atingida.

(g) Construa a trajetória completa do movimento no próprio papel com as marcas do carbono.

(h) Faça uma tabela contendo os cinco valores das alturas de cada disparo e os valores médios para cada posição de x.

5. Análise Teórica do Movimento

(a) Escreva as equações do movimento horizontal e vertical de um projétil lançado com velocidade v_0 que faz um ângulo θ com a horizontal.

(b) Obtenha a equação da trajetória.

(c) Calcule o tempo de voo do projétil.

(d) Obtenha uma expressão para a altura máxima.

(e) A partir do item anterior, expresse a velocidade inicial em função da altura máxima.

6. Análise Experimental do Movimento

(a) Faça um gráfico y versus x em um papel milimetrado.

(b) Compare o ângulo de disparo medido experimentalmente com o valor obtido pelo gráfico traçado no papel milimetrado.

(c) Determine a velocidade inicial de disparo utilizando a expressão obtida no item 5(e).

(d) Obtenha os coeficientes A e B da Equação (1).

(e) Determine o tempo total do projétil no ar se ele completasse a trajetória.
7. Referências Bibliográficas

9º EXPERIMENTO: COLISÕES UNIDIMENSIONAIS

1. Objetivos

Descrever, a partir da análise das grandezas físicas envolvidas, colisões entre dois corpos em movimento unidimensional.

2. Introdução Teórica

Pela 3ª lei de Newton quando dois corpos isolados de massa \(m_1 \) e \(m_2 \) interagem, as forças que atuam sobre cada um deles, devido ao outro, são, em cada instante, iguais e opostas.

Segue que a quantidade de movimento linear (\(\vec{P} \)) do conjunto de dois corpos não deve variar, pois a resultante das forças externas é nula.

Se \(\vec{u}_1 \) e \(\vec{u}_2 \) são as velocidades respectivas dos dois corpos antes da interação e \(\vec{v}_1 \) e \(\vec{v}_2 \), são suas velocidades depois da interação, teremos para o momento linear do sistema:

\[
\sum \vec{P}_i = \sum \vec{P}_f \Rightarrow
\]

\[
\Rightarrow \quad m_1 \vec{u}_1 + m_2 \vec{u}_2 = m_1 \vec{v}_1 + m_2 \vec{v}_2
\]

Como todas as velocidades estão na mesma direção (movimento unidimensional), a equação 2 fica:

\[
m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2.
\]

Para a energia cinética, caso a colisão seja perfeitamente elástica, temos,
\[\sum K_i = \sum K_f \Rightarrow \]

\[\frac{1}{2} m_1 u_1^2 + \frac{1}{2} m_2 u_2^2 = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \]

(5)

3. Procedimento Experimental

Uma foto do aparato experimental é apresentada na Figura 1. O processo de colisão das esferas metálicas é unidimensional, pois instantes após a colisão a esfera alvo passa a se deslocar na mesma direção do projétil.

Figura 1 – Colisão unidimensional entre as esferas metálicas

Fonte: Elaborado pelo autor.

(a) Meça a massa do projétil e da esfera alvo.
(b) Meça o diâmetro de cada uma das esferas.
(c) Cole as folhas de papel na mesa.
(d) Execute um lançamento do projétil para determinar a sua velocidade antes da colisão e para traçar a linha de referência.
(e) Execute algumas colisões para verificar o ponto de queda das esferas.
(f) Coloque o papel carbono nas regiões dos pontos de queda.
(g) Mede a altura das esferas em relação à superfície da mesa.

4. Questões

(a) Determine a quantidade de movimento do sistema antes da colisão.
(b) Determine a quantidade de movimento do sistema após a colisão.
(c) Calcule o erro percentual dos valores obtidos nos itens anteriores.
(d) Faça uma discussão a respeito da conservação da quantidade de movimento do experimento realizado.
(e) Qual o erro percentual da Energia Mecânica do sistema?
1ª EXPERIMENTO: COLISÕES BIDIMENSIONAIS

1. **Objetivo:** Verificar a conservação da quantidade de movimento linear.

2. **Experimento: Colisão elástica bidimensional**

 A Figura 1 apresenta as configurações do processo de colisão de duas esferas. A partir da análise geométrica da imagem apresentada durante o processo de colisão, é possível determinar teoricamente o valor de θ_2.

 Figuras 1 – Instantes antes e durante o processo de colisão de duas esferas

<table>
<thead>
<tr>
<th>Antes da Colisão</th>
<th>Durante a Colisão</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>m_2</td>
</tr>
<tr>
<td>v_{1i}</td>
<td>v_{1f}</td>
</tr>
<tr>
<td>θ_1</td>
<td>θ_2</td>
</tr>
<tr>
<td>b</td>
<td>v_{2f}</td>
</tr>
</tbody>
</table>

 Fonte: Elaborado pelo autor.

 A distância vertical b entre o centro das duas esferas é o parâmetro de impacto. O ângulo θ_1 é denominado de ângulo de dispersão.

3. **Procedimento Experimental**

 O processo de colisão bidimensional (Figura 2) da esfera metálica com a esfera alvo ocorre a uma altura da mesa h em relação à superfície da mesa.
Figura 2 – Colisão bidimensional entre a esfera metálica e a esfera de plástico

Nota: Instantes antes do processo de colisão bidimensional entre a esfera metálica e a esfera de plástico.
Fonte: Elaborado pelo autor.

Siga o procedimento experimental abaixo para realizar o experimento de colisão bidimensional.

(a) Meça a massa da esfera de metal e da esfera alvo (plástico)
(b) Meça o diâmetro de cada uma das esferas.
(c) Meça o parâmetro de impacto.
(d) Fixe folhas de papel em branco na mesa.
(e) Execute um lançamento de projétil com a esfera metálica para determinar a sua velocidade antes da colisão e para traçar a linha de referência.
(f) Execute algumas colisões para verificar o ponto de queda das esferas.
(g) Coloque o papel carbono nas regiões dos pontos de queda.
(h) Meça os ângulos após o processo de colisão em relação à linha de referência.
(i) Meça a altura das esferas em relação à superfície da mesa.
4. Questões

(a) Determine a quantidade de movimento linear do sistema antes da colisão.
(b) Determine a quantidade de movimento linear do sistema após a colisão.
(c) Calcule o erro percentual dos valores obtidos nos itens anteriores.
(d) Faça uma discussão a respeito da conservação da quantidade de movimento do experimento realizado.
(e) Qual o erro percentual da Energia Mecânica do sistema?
11º EXPERIMENTO - A: PRINCÍPIO DE CONSERVAÇÃO DA ENERGIA

1. Objetivo

Este experimento tem por objetivo analisar a conservação da energia mecânica.

2. Introdução Teórica

O princípio de conservação da energia deve ser tomado como lei fundamental da natureza. Embora possamos transformar uma forma de energia em outra, como por exemplo, energia potencial em energia cinética, a quantidade de trabalho que podemos realizar com esta dada energia, permanece sempre constante. Mesmo em reações químicas ou nucleares, a energia liberada não é produto de um milagre. Ainda nestes casos a energia total antes e após a reação, é conservada e continua valendo o princípio de que "na natureza nada se perde nada se cria, tudo se transforma".

Respeitadas as devidas proporções, queremos com esse experimento demonstrar a validade deste princípio (para um caso mais geral, a análise deveria ser realizada sob a luz da mecânica relativística). Serão desprezadas as forças de atrito e o sistema será considerado como um pêndulo simples.

A Figura 1 mostra uma esfera metálica de massa \(m \) se movendo com velocidade \(\dot{v} \) em direção a um corpo de massa \(M \) suspenso por uma haste de comprimento \(R \) de massa desprezível. Durante a colisão inelástica, a esfera se aloja no compartimento do corpo suspenso. Neste processo não há conservação da energia mecânica. Após a colisão, o pêndulo se desloca da posição vertical para uma posição angular \(\theta \) e o centro de massa do sistema se eleva de \(\Delta h \).
Figura 1 – Aparato experimental para verificar o princípio da conservação da energia.

Nota: O esquema indica o pêndulo de massa M com a bolinha de massa m alojada em seu interior. Assim o sistema passa a ter uma massa total = $M+m$, deslocado de sua posição vertical de um ângulo θ. O ponto cm indica a posição do centro de massa.

Fonte: Manual do kit do experimento

Logo após a colisão, se a energia potencial gravitacional for considerada igual a zero na posição do centro de massa, a energia mecânica do sistema estará na forma de energia cinética E_c (equação 1). Se houver conservação da energia mecânica, essa energia será convertida totalmente em energia potencial gravitacional U_g (equação 2) quando o ponto do centro de massa se elevar de Δh.

\[
E_c = \frac{1}{2} (M + m).V^2 \tag{1}
\]

\[
U_g = (M + m).g.\Delta h \tag{2}
\]
3. Procedimento Experimental

O objetivo é verificar a conservação da energia mecânica pela comparação da energia cinética E_c, calculada para o sistema logo após a colisão, com a energia potencial gravitacional U_g. A velocidade V do sistema logo após o processo de colisão poderá ser calculada a partir da conservação da quantidade de movimento linear e o valor de Δh poderá ser encontrado conhecendo-se o deslocamento angular θ e o comprimento da haste R.

Realize o seguinte procedimento experimental:

a). Com o canhão na horizontal, coloque a esfera de aço no canhão em uma posição de compressão fixa.

b). Dispare o canhão e anote o deslocamento angular θ do sistema.

c). Repita o mesmo experimento mais 3 vezes.

d). Modifique a compressão da mola para outras duas posições e repita os itens (a), (b) e (c).

4. Questões

a) Determine uma expressão para Δh em função de θ.

b) Calcule o erro percentual $E\%$ entre a energia mecânica inicial (E_c) e a energia mecânica final (U_g) para os três experimentos.

c) Devido ao atrito e ao modelo idealizado do pêndulo simples, se for considerada que a energia mecânica se conserva para um erro de 15%, pode-se dizer que houve conservação da energia mecânica nos três experimentos?

d) Que modificação teórica você faria para analisar com mais precisão a conservação da energia?
5. Referências Bibliográficas

11° EXPERIMENTO - B: PRINCÍPIO DE CONSERVAÇÃO DA ENERGIA

1. Objetivo

Mostrar a validade do princípio de conservação em situações onde ocorre a transferência de energia de um corpo para outro.

2. Introdução Teórica

O princípio de conservação da energia deve ser tomado como lei fundamental da natureza. Embora possamos transformar uma forma de energia em outra, como por exemplo, energia potencial em energia cinética, a quantidade de trabalho que podemos realizar com esta dada energia, permanece sempre constante. Mesmo em reações químicas ou nucleares, a energia liberada não é produto de um milagre. Ainda nestes casos a energia total antes e após a reação, é conservada e continua valendo o princípio de que "na natureza nada se perde nada se cria, tudo se transforma".

Respeitadas as devidas proporções, queremos com esse experimento demonstrar a validade deste princípio (para um caso mais geral, a análise deveria ser realizada sob a luz da mecânica relativística).

No experimento apresentado na Figura 1, um pêndulo é deslocado de sua posição de equilíbrio e, depois de solto, colide com uma esfera de aço projetando-a no espaço.
Figura 1 – Aparato Experimental: Princípio da conservação da energia

Nota: Desenho esquemático do experimento que permite a análise da conservação da energia mecânica.
Fonte: Elaborado pelo autor.

Após o choque, parte da energia do pêndulo (ou até mesmo toda energia) poderá ser transferida para a esfera. Neste caso, a equação que regem o experimento é dada por:

$$E_{pi} = E_{ci} + E_{pf}$$

As energias potenciais, inicial e final, do pêndulo são dadas por:

$$E_{pi} = m_i \cdot g \cdot l(1 - \cos \theta_i)$$

e

$$E_{pf} = m_i \cdot g \cdot l(1 - \cos \theta_f)$$
Para calcular a energia cinética da esfera de aço, em função de x e h, deve-se calcular inicialmente o tempo de queda da esfera. Assim,

$$ t = \sqrt{\frac{2h}{g}} $$

De posse do tempo de queda, pode-se obter a velocidade inicial do movimento.

$$ V_{\text{hec}} = x \sqrt{\frac{g}{2h}} $$

A consideração que fizemos, neste caso, foi supor que a velocidade inicial na direção vertical é nula. Assim, a energia cinética transferida à esfera de aço, devido ao impacto, será.

$$ E_c = \frac{m_2 g x^2}{4h} $$

Portanto, substituindo as expressões (2), (3) e (6) em (1) teremos:

$$ m_i l (1 - \cos \theta_i) = m_i l (1 - \cos \theta_f) + \frac{m_2 x^2}{4h} $$

Ou ainda:

$$ m_i l (\cos \theta_f - \cos \theta_i) = \frac{m_2 x^2}{4h} $$
3. Procedimento Experimental

Utilize \(m_1 > m_2 \) na realização das medidas experimentais e considere a massa da haste desprezível.

(a). Coloque uma folha de papel sulfite sobre uma folha de papel carbono de forma que as distâncias \(x \) percorridas pela esfera possam ser medidas (veja Figura 1).
(b). Segure o pêndulo, de modo a obter \(\theta_i \) igual a 20°, e então o solte (medidos em relação à vertical).
(c). Anote o valor de \(\theta_f \) e repita o mesmo experimento mais 3 vezes.
(d). Modifique o ângulo \(\theta_i \) para 30°, 40° e 50° e repita o procedimento dos itens (a), (b) e (c).
(e). Retire a folha de sulfite e meça para cada valor de \(\theta_i \) o conjunto de distâncias \(x \) percorridas pela esfera (faça uma tabela com os resultados).
(f). Calcule o valor médio de \(x \) para cada conjunto de dados.
(g). Verifique a validade do princípio de conservação para cada conjunto de dados. Calcule o erro percentual cometido.

4. Questões

a). Que tipo de choque deve ocorrer para que o experimento funcione bem? Justifique.
b). Qual a influência que tem a massa da haste sobre os resultados obtidos?
c). Quais dos parâmetros devem ser medidos com maior precisão: \(\theta \), \(x \) ou \(h \)? Justifique.

5. Referências Bibliográficas

CONSTANTES FÍSICAS

Quadro 1 – Valores das principais constantes físicas

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Velocidade da luz no vácuo (c)</td>
<td>299,792,458 km.s⁻¹</td>
</tr>
<tr>
<td>02</td>
<td>Constante de Gravitação Universal (G)</td>
<td>6,672 59 x 10⁻¹¹ N.m².kg⁻²</td>
</tr>
<tr>
<td>03</td>
<td>Constante de Stefan-Boltzmann</td>
<td>5,670 51 x 10⁻⁸ W.m⁻².K⁻⁴</td>
</tr>
<tr>
<td>04</td>
<td>Constante de Planck (h)</td>
<td>6,626 075 x 10⁻³⁴ J.s</td>
</tr>
<tr>
<td>05</td>
<td>Carga do elétron (e)</td>
<td>-1,602 177 x 10⁻¹⁹ C</td>
</tr>
<tr>
<td>06</td>
<td>Massa do elétron em repouso (mₑ)</td>
<td>9,109 389 x 10⁻³¹ kg</td>
</tr>
<tr>
<td>07</td>
<td>Massa do próton em repouso (mₚ)</td>
<td>1,672 623 x 10⁻²⁷ kg</td>
</tr>
<tr>
<td>08</td>
<td>Massa do nêutron em repouso (mₙ)</td>
<td>1,674 928 x 10⁻²⁷ kg</td>
</tr>
<tr>
<td>09</td>
<td>Massa do átomo de hidrogênio (mₕ)</td>
<td>1,673 4 x 10⁻²⁷ kg</td>
</tr>
<tr>
<td>10</td>
<td>Fator de conversão massa-energia</td>
<td>1g = 5,61 x 10⁻²⁶ MeV</td>
</tr>
<tr>
<td>11</td>
<td>Unidade de massa atômica (u)</td>
<td>1,660 540 x 10⁻²⁷ kg</td>
</tr>
<tr>
<td>12</td>
<td>Massa atômica do neutron</td>
<td>1,008 664 904 u</td>
</tr>
<tr>
<td>13</td>
<td>Massa atômica do próton</td>
<td>1,007 276 470 u</td>
</tr>
<tr>
<td>14</td>
<td>Massa atômica do dêuteron</td>
<td>2,013 553 214 u</td>
</tr>
<tr>
<td>15</td>
<td>Comprimento de onda Compton para o elétron</td>
<td>2,4262 x 10⁻¹² m</td>
</tr>
<tr>
<td>16</td>
<td>Comprimento de onda Compton para o próton</td>
<td>1,3214 x 10⁻¹⁵ m</td>
</tr>
<tr>
<td>17</td>
<td>Constante dos gases perfeitos (Rₒ)</td>
<td>8,314 510 J.K⁻¹.mol⁻¹</td>
</tr>
<tr>
<td>18</td>
<td>Número de Avogadro (Nₒ)</td>
<td>6,022 136 x 10²³ mol⁻¹</td>
</tr>
<tr>
<td>19</td>
<td>Constante de Boltzmann k = Rₒ / Nₒ</td>
<td>1,380 658 x 10⁻²³ J.K⁻¹</td>
</tr>
<tr>
<td>20</td>
<td>Constante de Rydberg (Rₑ)</td>
<td>1,097 373 15 x 10⁷ m⁻¹</td>
</tr>
<tr>
<td>21</td>
<td>Raio clássico do elétron (rₑ)</td>
<td>2,817 940 x 10⁻¹⁵ m</td>
</tr>
<tr>
<td>22</td>
<td>Equivalente de 1 elétron-Volt</td>
<td>1,602 177 x 10⁻¹⁹ J</td>
</tr>
<tr>
<td>23</td>
<td>Constante de Coulomb (Kₑ)</td>
<td>8,987 4 x 10⁹ N.m².C⁻²</td>
</tr>
<tr>
<td>24</td>
<td>Permissividade do vácuo</td>
<td>8,854 187 x 10¹² C².N⁻¹.m⁻²</td>
</tr>
<tr>
<td>25</td>
<td>Permeabilidade do vácuo (µₒ)</td>
<td>1,256 637 x 10⁶ m.kg.C⁻²</td>
</tr>
<tr>
<td>26</td>
<td>Constante magnética (Kₘ)</td>
<td>1,0000 x 10⁻⁷ m.kg.C⁻²</td>
</tr>
<tr>
<td>27</td>
<td>Zero absoluto</td>
<td>- 273,16 °C</td>
</tr>
<tr>
<td>28</td>
<td>Equivalente mecânico da caloria</td>
<td>4,1840 J</td>
</tr>
<tr>
<td>29</td>
<td>Temperatura correspondente a 1 eV</td>
<td>11.606 K</td>
</tr>
<tr>
<td>30</td>
<td>Comprimento de onda correspondente a 1 eV</td>
<td>1,239,843 nm</td>
</tr>
<tr>
<td>31</td>
<td>Aceleração normal da gravidade (gₒ)</td>
<td>9,806 65 m.s⁻²</td>
</tr>
</tbody>
</table>