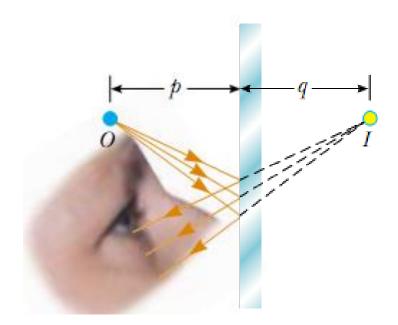
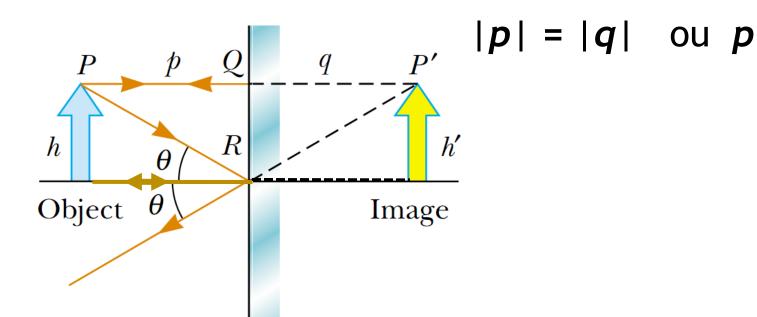
FORMAÇÃO DE IMAGENS -ESPELHOS PLANOS E ESFÉRICOS

Prof. Rafael Zadorosny

ESPELHOS


 Espelho é uma superfície que <u>reflete</u> um raio luminoso em uma direção definida, sem absorvê-lo ou espalhá-lo.

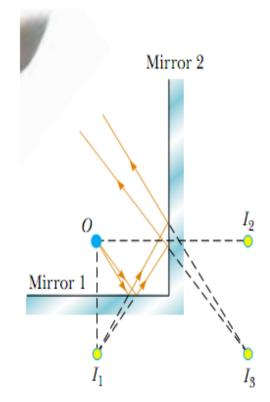
ESPELHOS PLANOS


- o Um objeto a uma distância p de um espelho plano.
- o Raios da luz são refletidos e chegam aos nossos olhos
- Estendendo os raios refletidos, eles se interceptam num ponto, a uma distância q, onde a imagem I é formada. Assim, tal imagem é dita <u>virtual</u>.

ESPELHOS PLANOS

 Cada ponto do objeto se comporta como uma fonte de luz, assim, temos:

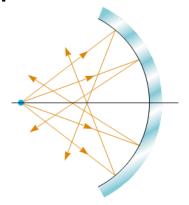
Como o triângulo PQR e P´QR são congruentes (têm a mesma forma e tamanho),

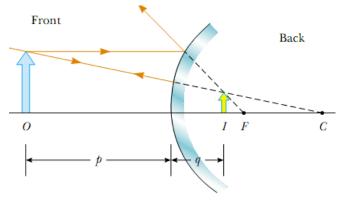


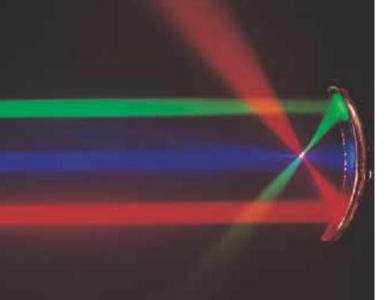
EXEMPLO CONCEITUAL

Conceptual Example 36.1 Multiple Images Formed by Two Mirrors

Two flat mirrors are perpendicular to each other, as in Figure 36.5, and an object is placed at point *O*. In this situation, multiple images are formed. Locate the positions of these images.


Solution The image of the object is at I_1 in mirror 1 and at I_2 in mirror 2. In addition, a third image is formed at I_3 . This third image is the image of I_1 in mirror 2 or, equivalently, the image of I_2 in mirror 1. That is, the image at I_1 (or I_2) serves as the object for I_3 . Note that to form this image at I_3 , the rays reflect twice after leaving the object at O.

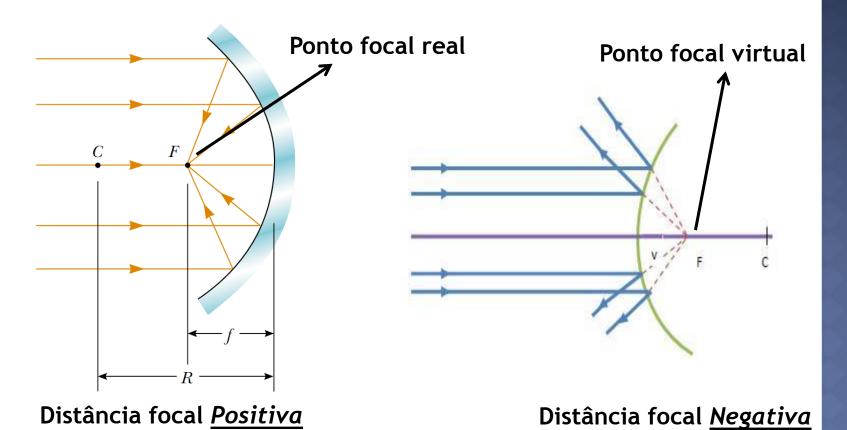

Figure 36.5 (Conceptual Example 36.1) When an object is placed in front of two mutually perpendicular mirrors as shown, three images are formed.


ESPELHOS ESFÉRICOS

Espelhos Côncavos

Espelhos Convexos

ESPELHOS CÔNCAVOS

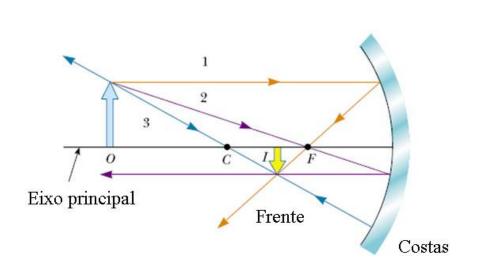

- Algumas características dos espelhos côncavos:
 - O centro de curvatura, C, está a uma distância finita e <u>na frente do espelho</u> (para o espelho plano estava a uma distância infinita).
 - O campo de visão diminui com relação ao espelho plano
 - A distância da imagem aumenta em relação ao espelho plano.
 - O tamanho da imagem aumenta em relação ao espelho plano.

ESPELHOS CONVEXOS

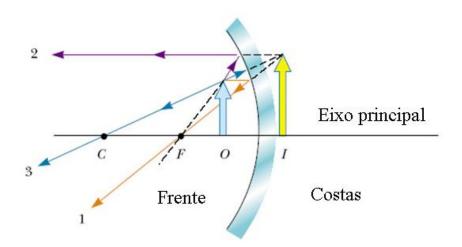
- Algumas características dos espelhos convexos:
 - O centro de curvatura, C, está a uma distância finita e <u>atrás do espelho</u> (para o espelho plano estava a uma distância infinita).
 - O campo de visão aumenta com relação ao espelho plano
 - A distância da imagem diminui em relação ao espelho plano.
 - O tamanho da imagem diminui em relação ao espelho plano.

PONTOS FOCAIS DOS ESPELHOS ESFÉRICOS

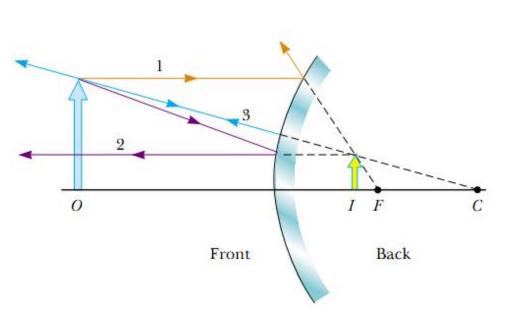
 Vamos considerar um objeto situado no eixo central a uma grande distância do espelho.

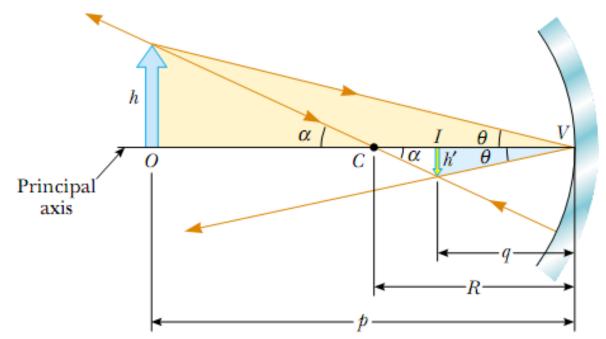

PONTOS FOCAIS DOS ESPELHOS ESFÉRICOS

• Em ambos os casos, a relação entre a distância focal, f, e o raio de curvatura do espelho é dada por:


$$f = \frac{R}{2}$$

sendo *R positivo* para o **espelho côncavo** e <u>negativo</u> para o **convexo**.


 Uma vez definida a distância focal, f, podemos determinar a relação entre a distância da imagem, q, e a do objeto, p.

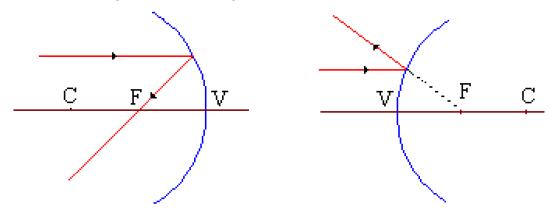

 Quando o <u>objeto está exatamente no foco</u>, os raios refletidos são paralelos e, portanto, nem eles e nem seus prolongamentos se interceptam, assim, <u>não se forma uma</u> <u>imagem</u>.

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

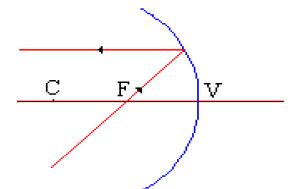
 Esta expressão se aplica para qualquer espelho (plano, côncavo ou convexo) desde que seja válida a aproximação de pequenos ângulos.

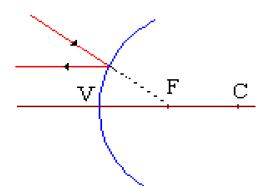
- Esta aproximação quer dizer que sen(θ)~θ e cos(θ)~1,i.e., os raios de luz estão muito próximos do eixo principal (eixo ótico), sendo conhecidos também por raios paraxiais.
- Em 1841 Gauss construiu uma análise nesta aproximação, que é conhecida como ótica Gaussiana, paraxial ou de primeira ordem.

• O tamanho do objeto medido perpendicularmente ao eixo central do espelho é chamado altura do objeto, h, ou da imagem, h'. A razão h'/h, é o chamada ampliação lateral do espelho, M.

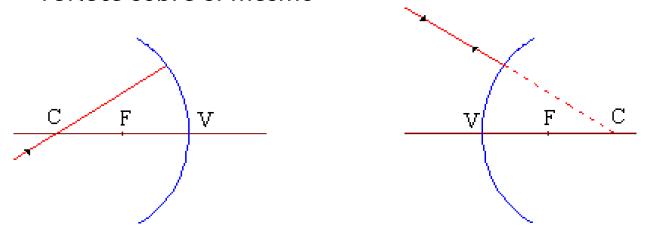

$$M = \frac{h'}{h} = -\frac{q}{p}$$

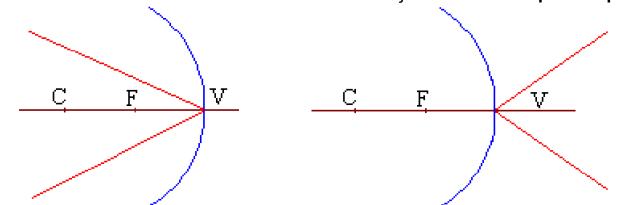
• Por convenção:


- M>0 quando a imagem tem mesma orientação do objeto
- M<0 quando a imagem tem orientação oposta a do objeto


PROPRIEDADE DOS ESPELHOS ESFÉRICOS - DIAGRAMA DE RAIOS

 1- Todo raio inicialmente paralelo ao eixo central, reflete-se passando pelo foco


 2 - Todo raio que passa pelo foco (F) reflete-se paralelamente ao eixo central



PROPRIEDADE DOS ESPELHOS ESFÉRICOS - DIAGRAMA DE RAIOS

 3 - Todo raio que passa pelo centro de curvatura, C, reflete sobre si mesmo

 4 - Todo raio que incide sobre o vértice, V, do espelho, reflete-se simetricamente em relação ao eixo principal

ATENÇÃO AOS SINAIS

Sign Conventions for Mirrors

Quantity	Positive When	Negative When
Object location (p)	Object is in front of mirror (real object)	Object is in back of mirror (virtual object)
Image location (q)	Image is in front of mirror (real image)	Image is in back of mirror (virtual image)
Image height (h')	Image is upright	Image is inverted
Focal length (f) and radius (R)	Mirror is concave	Mirror is convex
Magnification (M)	Image is upright	Image is inverted

• Ex.1:

Assume that a certain spherical mirror has a focal length of +10.0 cm. Locate and describe the image for object distances of

- (A) 25.0 cm,
- **(B)** 10.0 cm, and
- (C) 5.00 cm.

Solução Ex.1:

(A) This situation is analogous to that in Figure 36.15a; hence, we expect the image to be real. We find the image distance by using Equation 36.6:

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

$$\frac{1}{25.0 \text{ cm}} + \frac{1}{q} = \frac{1}{10.0 \text{ cm}}$$

$$q = \frac{16.7 \text{ cm}}{1}$$

The magnification of the image is given by Equation 36.2:

$$M = -\frac{q}{p} = -\frac{16.7 \text{ cm}}{25.0 \text{ cm}} = -0.668$$

The fact that the absolute value of M is less than unity tells us that the image is smaller than the object, and the negative sign for M tells us that the image is inverted. Because q is positive, the image is located on the front side of the mirror and is real.

Solução Ex.1:

(B) When the object distance is 10.0 cm, the object is located at the focal point. Now we find that

$$\frac{1}{10.0 \text{ cm}} + \frac{1}{q} = \frac{1}{10.0 \text{ cm}}$$
$$q = \infty$$

which means that rays originating from an object positioned at the focal point of a mirror are reflected so that the image is formed at an infinite distance from the mirror; that is, the rays travel parallel to one another after reflection. This is the situation in a flashlight, where the bulb filament is placed at the focal point of a reflector, producing a parallel beam of light.

Solução Ex.1:

(C) When the object is at p = 5.00 cm, it lies halfway between the focal point and the mirror surface, as shown in Figure 36.15b. Thus, we expect a magnified, virtual, upright image. In this case, the mirror equation gives

$$\frac{1}{5.00 \text{ cm}} + \frac{1}{q} = \frac{1}{10.0 \text{ cm}}$$
$$q = -10.0 \text{ cm}$$

The image is virtual because it is located behind the mirror, as expected. The magnification of the image is

$$M = -\frac{q}{p} = -\left(\frac{-10.0 \text{ cm}}{5.00 \text{ cm}}\right) = +2.00$$

The image is twice as large as the object, and the positive sign for M indicates that the image is upright (see Fig. 36.15b).

• Ex.2:

An anti-shoplifting mirror, as shown in Figure 36.17, shows an image of a woman who is located 3.0 m from the mirror. The focal length of the mirror is -0.25 m. Find

- (A) the position of her image and
- **(B)** the magnification of the image.

Solução Ex.2:

Solution (A) This situation is depicted in Figure 36.15c. We should expect to find an upright, reduced, virtual image. To find the image position, we use Equation 36.6:

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f} = \frac{1}{-0.25 \text{ m}}$$

$$\frac{1}{q} = \frac{1}{-0.25 \text{ m}} - \frac{1}{3.0 \text{ m}}$$

$$q = \frac{-0.23 \text{ m}}{-0.23 \text{ m}}$$

The negative value of q indicates that her image is virtual, or behind the mirror, as shown in Figure 36.15c.